Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(44): 49982-49991, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33079523

RESUMO

Diphylleia grayi-inspired hydrochromic nano/microstructured films have received much attention for its promising smart hydrochromic applications owing to their simple and low-cost but energy-effective strategy. A new type of water-switchable glazing film patterned with various nano/micro air-hole inverse opal arrays is introduced by selectively removing nano/microsphere polystyrene arrays embedded in the surface of polydimethylsiloxane (PDMS) films. Using the significant contrast ratio of the bleaching and the scattering states, we have optimized the switching properties of Mie scattered patterns. As a result, we obtained a single inverse opal layer-embedded PDMS adhesive film with hexagonally close-packed 1 µm air-hole arrays as an optimum scattered film. The differences of diffusive transmittance and optical haze values between the dry and the wet states of the best scattered film reached 44.93% (ΔTD.T = 59.11-14.18%) and 54.88% (ΔH = 69.42-14.54%), respectively. In addition, using the best-optimized inverse opal layer-embedded PDMS film, we fabricated a perfectly imitated Diphylleia grayi structure for camouflage application and an intelligent hydrochromic window device. The dynamic water modulation of the scattered opaque and nonscattered transparent state of the inverse opal-patterned PDMS adhesive film can provide an advanced platform structure in the area of hydrochromic technology for smart windows, camouflage, and clear umbrellas for rainy days.

2.
ACS Appl Mater Interfaces ; 12(9): 10626-10636, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32030970

RESUMO

A newly developed nanopatterned broadband antireflective (AR) coating was fabricated on the front side of a glass/indium tin oxide/perovskite solar cell (PSC) by depositing a single interference layer onto a two-dimensional (2D)-patterned moth-eye-like nanostructure. The optimized developed AR nanostructure was simulated in a finite-difference time domain analysis. To realize the simulated developed AR nanostructure, we controlled the SiO2 moth-eye structure with various diameters and heights and a MgF2 single layer with varying thicknesses by sequentially performing nanosphere lithography, reactive ion etching, and electron-beam evaporation. Optimization of the developed AR nanostructure, which has a 100 nm-thick MgF2 film coated onto the SiO2 moth-eye-like nanostructure (diameter 165 nm and height 400 nm), minimizes the reflection loss throughout the visible range. As a result, the short-circuit current density (JSC) of the newly AR-coated PSC increases by 11.80%, while the open-circuit voltage (VOC) remains nearly constant. Therefore, the power conversion efficiency of the newly developed AR-decorated PSC increases by 12.50%, from 18.21% for a control sample to 20.48% for the optimum AR-coated sample. These results indicate that the newly developed MgF2/SiO2 AR nanostructure can provide an advanced platform technology that reduces the Fresnel loss and therefore increases the possibility of the commercialization of glass-based PSCs.

3.
Curr Microbiol ; 53(5): 358-64, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17066340

RESUMO

A new antagonistic Burkholderia strain, designated MP-1 and producing antifungal activities against various filamentous plant pathogenic fungi, was isolated from the rhizoshere in the Naju area. Cultural characteristic studies strongly suggested that this strain belongs to the genus Burkholderia. The nucleotide sequence of the 16S rRNA gene (1491 pb) of strain MP-1 exhibited close similarity (99% to 100%) with other Burkholderia 16S rRNA genes. Extraction of fermentation broth of Burkholderia sp. MP-1 and various separations and purification steps led to isolation of four pure active molecules. The chemical structure of these four compounds-named phenylacetic acid, hydrocinnamic acid, 4-hydroxyphenylacetic acid, and 4-hydroxyphenylacetate methyl ester-was established on the basis on their gas chromatography-electron impact-mass spectrometry (GC-EI-MS) and trimethylsilation GC-EI-MS data. The four isolated compounds inhibited filamentous fungal growth on potato dextrose agar medium supplemented with 100 mg/L of phenylacetic acid, hydrocinnamic acid, 4-hydroxyphenylacetic acid and 4-hydroxyphenylacetate methyl ester individually.


Assuntos
Antifúngicos/isolamento & purificação , Burkholderia/metabolismo , Antifúngicos/farmacologia , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Fenilacetatos/farmacologia , Fenilpropionatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...