Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
2.
Cancer Cell Int ; 24(1): 218, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918782

RESUMO

BACKGROUND: Assessment of measurable residual disease (MRD) is an essential prognostic tool for B-lymphoblastic leukaemia (B-ALL). In this study, we evaluated the utility of next-generation sequencing (NGS)-based MRD assessment in real-world clinical practice. METHOD: The study included 93 paediatric patients with B-ALL treated at our institution between January 2017 and June 2022. Clonality for IGH or IGK rearrangements was identified in most bone marrow samples (91/93, 97.8%) obtained at diagnosis. RESULTS: In 421 monitoring samples, concordance was 74.8% between NGS and multiparameter flow cytometry and 70.7% between NGS and reverse transcription-PCR. Elevated quantities of clones of IGH alone (P < 0.001; hazard ratio [HR], 22.2; 95% confidence interval [CI], 7.1-69.1), IGK alone (P = 0.011; HR, 5.8; 95% CI, 1.5-22.5), and IGH or IGK (P < 0.001; HR, 7.2; 95% CI, 2.6-20.0) were associated with an increased risk of relapse. Detection of new clone(s) in NGS was also associated with inferior relapse-free survival (P < 0.001; HR, 18.1; 95% CI, 3.0-108.6). Multivariable analysis confirmed age at diagnosis, BCR::ABL1-like mutation, TCF3::PBX1 mutation, and increased quantity of IGH or IGK clones during monitoring as unfavourable factors. CONCLUSION: In conclusion, this study highlights the usefulness of NGS-based MRD as a routine assessment tool for prognostication of paediatric patients with B-ALL.

3.
Cancer Cell Int ; 24(1): 174, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764048

RESUMO

INTRODUCTION: Acute myeloid leukemia (AML) is a complex hematologic malignancy characterized by uncontrolled proliferation of myeloid precursor cells within bone marrow. Despite advances in understanding of its molecular underpinnings, AML remains a therapeutic challenge due to its high relapse rate and clonal evolution. METHODS: In this retrospective study, we analyzed data from 24 AML patients diagnosed at a single institution between January 2017 and August 2023. Comprehensive genetic analyses, including chromosomal karyotyping, next-generation sequencing, and gene fusion assays, were performed on bone marrow samples obtained at initial diagnosis and relapse. Clinical data, treatment regimens, and patient outcomes were also documented. RESULTS: Mutations in core genes of FLT3, NPM1, DNMT3A, and IDH2 were frequently discovered in diagnostic sample and remained in relapse sample. FLT3-ITD, TP53, KIT, RUNX1, and WT1 mutation were acquired at relapse in one patient each. Gene fusion assays revealed stable patterns, while chromosomal karyotype analyses indicated a greater diversity of mutations in relapsed patients. Clonal evolution patterns varied, with some cases showing linear or branching evolution and others exhibiting no substantial change in core mutations between diagnosis and relapse. CONCLUSIONS: Our study integrates karyotype, gene rearrangements, and gene mutation results to provide a further understanding of AML heterogeneity and evolution. We demonstrate the clinical relevance of specific mutations and clonal evolution patterns, emphasizing the need for personalized therapies and measurable residual disease monitoring in AML management. By bridging the gap between genetics and clinical outcome, we move closer to tailored AML therapies and improved patient prognoses.

4.
JAMA Netw Open ; 7(5): e2414198, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819824

RESUMO

Importance: Despite advances in next-generation sequencing (NGS), a significant proportion of patients with inherited retinal disease (IRD) remain undiagnosed after initial genetic testing. Exome sequencing (ES) reanalysis in the clinical setting has been suggested as one method for improving diagnosis of IRD. Objective: To investigate the association of clinician-led reanalysis of ES data, which incorporates updated clinical information and comprehensive bioinformatic analysis, with the diagnostic yield in a cohort of patients with IRDs in Korea. Design, Setting, and Participants: This was a multicenter prospective cohort study involving 264 unrelated patients with IRDs, conducted in Korea between March 2018 and February 2020. Comprehensive ophthalmologic examinations and ES analyses were performed, and ES data were reanalyzed by an IRD specialist for single nucleotide variants, copy number variants, mobile element insertions, and mitochondrial variants. Data were analyzed from March to July 2023. Main Outcomes and Measures: Diagnostic rate of conventional bioinformatic analysis and clinician-driven ES reanalysis. Results: A total of 264 participants (151 [57.2%] male; mean [SD] age at genetic testing, 33.6 [18.9] years) were enrolled, including 129 patients (48.9%) with retinitis pigmentosa and 26 patients (9.8%) with Stargardt disease or macular dystrophy. Initial bioinformatic analysis diagnosed 166 patients (62.9%). Clinician-driven reanalysis identified the molecular cause of diseases in an additional 22 patients, corresponding to an 8.3-percentage point increase in diagnostic rate. Key factors associated with new molecular diagnoses included clinical phenotype updates (4 patients) and detection of previously overlooked variation, such as structural variants (9 patients), mitochondrial variants (3 patients), filtered or not captured variants (4 patients), and noncanonical splicing variants (2 patients). Among the 22 patients, variants in 7 patients (31.8%) were observed in the initial analysis but not reported to patients, while those in the remaining 15 patients (68.2%) were newly detected by the ES reanalysis. Conclusions and Relevance: In this cohort study, clinician-centered reanalysis of ES data was associated with improved molecular diagnostic yields in patients with IRD. This approach is important for uncovering missed genetic causes of retinal disease.


Assuntos
Sequenciamento do Exoma , Doenças Retinianas , Humanos , Masculino , Feminino , Sequenciamento do Exoma/métodos , Adulto , Estudos Prospectivos , Doenças Retinianas/genética , Doenças Retinianas/diagnóstico , Pessoa de Meia-Idade , República da Coreia , Testes Genéticos/métodos , Testes Genéticos/estatística & dados numéricos , Adolescente , Adulto Jovem , Criança , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional/métodos
5.
Ann Lab Med ; 44(5): 437-445, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38724225

RESUMO

Background: Facioscapulohumeral muscular dystrophy (FSHD) is a common form of muscular dystrophy that mainly affects skeletal muscle. FSHD1 accounts for 95% of all FSHD cases and can be diagnosed based on the pathogenic contraction of the D4Z4-repeat array on chromosome 4q35. Genetic diagnosis of FSHD1 is challenging because of the large size and repetitive nature of the D4Z4 region. We evaluated the clinical applicability of optical genome mapping (OGM) for the genetic diagnosis of FSHD1. Methods: We included 25 individuals with clinically confirmed or suspected/probable FSHD and their families. Ultra-high-molecular-weight DNA from peripheral blood was labeled, stained, and imaged using a single-molecule OGM platform (Bionano Genomics Saphyr system). D4Z4 repeat size and haplotype information were analyzed using the manufacturer's dedicated pipeline. We also compared the workflow and test time between Southern blot analysis and OGM. Results: We obtained concordant OGM and Southern blot results with 10 samples from patients with clinically confirmed FSHD. The D4Z4 repeat size differed within 1 unit between the Southern blot analysis and OGM. Among nine patients with clinically suspected or probable FSHD, six patients were confirmed to have pathogenic contractions by OGM. In our cohort, one de novo mosaic FSHD1 patient was successfully diagnosed with OGM. Moreover, OGM has a more straightforward and less time-consuming workflow than Southern blot analysis. Conclusions: OGM enables accurate and reliable detection of pathogenic contraction of the D4Z4-repeat array and is a valuable tool for the genetic diagnosis of FSHD1.


Assuntos
Distrofia Muscular Facioescapuloumeral , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/diagnóstico , Humanos , Cromossomos Humanos Par 4/genética , Masculino , Mapeamento Cromossômico , Feminino , Southern Blotting , Haplótipos , Adulto , Pessoa de Meia-Idade
6.
Clin Chim Acta ; 560: 119703, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763467

RESUMO

BACKGROUND AND AIMS: Next-generation sequencing (NGS)-based copy number variants (CNVs) have high false-positive rates. The fewer the exons involved, the higher the false-positive rate. A CytoScan XON assay was developed to assess exon-level CNVs. MATERIALS AND METHODS: Twenty-three clinically relevant exon-level CNVs in 20 patient blood samples found in previous NGS studies were compared with the results from the CytoScan XON and multiplex ligation-dependent probe amplification (MLPA). RESULTS: Fifteen of the 23 exon-level CNVs were consistent with the NGS results. Among these, eight were confirmed using MLPA. In six out of eight discrepancies between the CytoScan Xon and NGS, MLPA was performed, and three were negative, indicating that the CNVs in NGS were false positives. The CytoScan XON exhibits a sensitivity of 72.7% for small exon-level CNVs, along with a specificity of 100%. The assay could not detect the three exon-level CNVs in PKD1 and TSC2 that were detected using both NGS and MLPA. This could be due to the distribution of the probes in some areas, and the CNV-calling regions containing multiple exons. CONCLUSION: The CytoScan XON assay is a promising complementary tool for the detection of exon-level CNVs, provided that the users carefully examine the distribution of probes and calling regions.


Assuntos
Variações do Número de Cópias de DNA , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Éxons/genética
7.
Ann Lab Med ; 44(4): 324-334, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38433573

RESUMO

Background: Structural variants (SVs) are currently analyzed using a combination of conventional methods; however, this approach has limitations. Optical genome mapping (OGM), an emerging technology for detecting SVs using a single-molecule strategy, has the potential to replace conventional methods. We compared OGM with conventional diagnostic methods for detecting SVs in various hematologic malignancies. Methods: Residual bone marrow aspirates from 27 patients with hematologic malignancies in whom SVs were observed using conventional methods (chromosomal banding analysis, FISH, an RNA fusion panel, and reverse transcription PCR) were analyzed using OGM. The concordance between the OGM and conventional method results was evaluated. Results: OGM showed concordance in 63% (17/27) and partial concordance in 37% (10/27) of samples. OGM detected 76% (52/68) of the total SVs correctly (concordance rate for each type of SVs: aneuploidies, 83% [15/18]; balanced translocation, 80% [12/15] unbalanced translocation, 54% [7/13] deletions, 81% [13/16]; duplications, 100% [2/2] inversion 100% [1/1]; insertion, 100% [1/1]; marker chromosome, 0% [0/1]; isochromosome, 100% [1/1]). Sixteen discordant results were attributed to the involvement of centromeric/telomeric regions, detection sensitivity, and a low mapping rate and coverage. OGM identified additional SVs, including submicroscopic SVs and novel fusions, in five cases. Conclusions: OGM shows a high level of concordance with conventional diagnostic methods for the detection of SVs and can identify novel variants, suggesting its potential utility in enabling more comprehensive SV analysis in routine diagnostics of hematologic malignancies, although further studies and improvements are required.


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Humanos , Inversão Cromossômica , Translocação Genética , Mapeamento Cromossômico
8.
Cancer Sci ; 115(5): 1680-1687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38475661

RESUMO

Most patients diagnosed with clear cell renal cell carcinoma (ccRCC) are also detected with small and organ-confined tumors, and the majority of these are classified as clinical tumor stage 1a (cT1a). A considerable proportion of patients with cT1 RCC shows tumor upstaging to pathological stage 3a (pT3a), and these patients have worse oncological outcomes. The role of circulating tumor DNA (ctDNA) in RCC has been limited to monitoring treatment response and resistance. Therefore, the present study aimed to evaluate the potential of ctDNA in predicting pT3a upstaging in cT1a ccRCC. We sequenced plasma samples preoperatively collected from 48 patients who had undergone partial nephrectomy for cT1a ccRCC using data from a prospective cohort RCC. The ctDNA were profiled and compared with clinicopathological ccRCC features to predict pT3a upstaging. Associations between ctDNA, tumor complexity, and pT3a upstaging were evaluated. Tumor complexity was assessed using the anatomical classification system. Univariate analysis used chi-squared and Student's t-tests; multivariate analysis considered significant factors from univariate analyses. Of the 48 patients with cT1a ccRCC, 12 (25%) were upstaged to pT3a, with ctDNA detected in 10 (20.8%), predominantly in patients with renal sinus fat invasion (SFI; n = 8). Among the pT3a group, ctDNA was detected in 75%, contrasting with only 2.8% in patients with pT1a (1/36). Detection of ctDNA was the only significant preoperative predictor of pT3a upstaging, especially in SFI. This study is the first to suggest ctDNA as a preoperative predictor of pT3a RCC upstaging from cT1a based on preoperative radiological images.


Assuntos
Carcinoma de Células Renais , DNA Tumoral Circulante , Neoplasias Renais , Estadiamento de Neoplasias , Nefrectomia , Humanos , Carcinoma de Células Renais/cirurgia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/sangue , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Nefrectomia/métodos , Feminino , Masculino , Neoplasias Renais/cirurgia , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/sangue , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Estudos Prospectivos , Adulto , Idoso de 80 Anos ou mais
9.
Front Oncol ; 14: 1365614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544839

RESUMO

Background: Aplastic anemia (AA), characterized by hematopoietic stem cell deficiency, can evolve into different hematologic malignancies. Our understanding of the genetic basis and mechanisms of this progression remains limited. Methods: We retrospectively studied 9 acquired AA patients who later developed hematologic malignancies. Data encompassed clinical, laboratory, karyotype, and next-generation sequencing (NGS) information. We explored chromosomal alterations and mutation profiles to uncover genetic changes underlying the transition. Results: Nine AA patients developed myelodysplastic syndrome (seven patients), acute myeloid leukemia (one patient), or chronic myelomonocytic leukemia (one patient). Among eight patients with karyotype results at secondary malignancy diagnosis, monosomy 7 was detected in three. Trisomy 1, der(1;7), del(6q), trisomy 8, and del(12p) were detected in one patient each. Among three patients with NGS results at secondary malignancy diagnosis, KMT2C mutation was detected in two patients. Acquisition of a PTPN11 mutation was observed in one patient who underwent follow-up NGS testing during progression from chronic myelomonocytic leukemia to acute myeloid leukemia. Conclusion: This study highlights the genetic dynamics in the progression from AA to hematologic malignancy. Monosomy 7's prevalence and the occurrence of PTPN11 mutations suggest predictive and prognostic significance. Clonal evolution underscores the complexity of disease progression.

10.
Blood Adv ; 8(6): 1487-1493, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38359363

RESUMO

ABSTRACT: ABO antigen weakness is rarely observed in ABO typing for transfusion. Hematologic diseases and associated gene mutations have been suggested as potential causes of this phenomenon, yet the precise etiology has not been elucidated. Through ABO typing and genetic analysis data conducted over 7 years, we have reconfirmed the association between ABO antigen weakness and hematologic diseases, especially acute myeloid leukemia (odds ratio [OR], 2.55; 95% confidence interval [CI], 1.12-5.83) and myelodysplastic syndrome (OR, 6.94; 95% CI, 2.86-16.83), and discovered previously unidentified candidate genes, CEBPA (OR, 43.70; 95% CI, 18.12-105.40), NRAS (OR, 3.37; 95% CI, 1.46-7.79), U2AF1 (OR, 8.12; 95% CI, 2.86-23.03), and PTPN11 (OR, 4.52; 95% CI, 1.51-13.50), seemingly associated with this phenomenon. Among these, CEBPA double mutations displayed a significant association, with ABO antigen weakness being observed in 20 of the 25 individuals (80.0%) possessing these mutations. From this study, new factors associated with ABO antigen weakness have been identified.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Proteínas Estimuladoras de Ligação a CCAAT/genética
11.
Sci Rep ; 14(1): 5055, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424134

RESUMO

Radioactive materials were released into the ocean following the Fukushima Daiichi Nuclear Power Plant accident in 2011. Six years after the accident, the radioactive material concentration was markedly increased in the Okhotsk Intermediate Water (OIW) of the Sea of Okhotsk. This material may have been subjected to southward subsurface dispersal by the North Pacific Intermediate Water (NPIW), which originates from the OIW. The spatiotemporal limitations of available methods have made it challenging to track the dispersal paths of radioactive materials in the North Pacific Subpolar region. Here, we performed a tracer experiment using a three-dimensional numerical model to determine the path of 137Cs from Fukushima to the Sea of Okhotsk via surface subpolar gyre currents and subsurface dispersion by OIW and NPIW. The results showed that the 137Cs concentration in the Sea of Okhotsk increased via the surface current and moved progressively southward via OIW six years after the accident and eastward via OIW and NPIW nine years after the accident, indicating that 137Cs transported by NPIW entered the subtropical region. Based on experiments, this temporal change was mainly caused by ocean currents. Thus, subsurface recirculation of radioactive material via the OIW and NPIW should be considered based on the predicted path and travel time of additional materials released from the power plant.

12.
Ann Lab Med ; 44(3): 279-288, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205526

RESUMO

Background: The mechanism and medical treatment target for degenerative aortic valve disease, including aortic stenosis, is not well studied. In this study, we investigated the effect of clonal hematopoiesis of indeterminate potential (CHIP) on the development of aortic valve sclerosis (AVS), a calcified aortic valve without significant stenosis. Methods: Participants with AVS (valves ≥2 mm thick, high echogenicity, and a peak transaortic velocity of <2.5 m/sec) and an age- and sex-matched control group were enrolled. Twenty-four CHIP genes with common variants in cardiovascular disease were used to generate a next-generation sequencing panel. The primary endpoint was the CHIP detection rate between the AVS and control groups. Inverse-probability treatment weighting (IPTW) analysis was performed to adjust for differences in baseline characteristics. Results: From April 2020 to April 2022, 187 participants (125 with AVS and 62 controls) were enrolled; the mean age was 72.6±8.5 yrs, and 54.5% were male. An average of 1.3 CHIP variants was observed. CHIP detection, defined by a variant allele frequency (VAF) of ≥0.5%, was similar between the groups. However, the AVS group had larger CHIP clones: 49 (39.2%) participants had a VAF of ≥1% (vs. 13 [21.0%] in the control group; P=0.020), and 25 (20.0%) had a VAF of ≥2% (vs. 4 [6.5%]; P=0.028). AVS is independently associated with a VAF of ≥1% (adjusted odds ratio: 2.44, 95% confidence interval: 1.11-5.36; P=0.027). This trend was concordant and clearer in the IPTW cohort. Conclusions: Participants with AVS more commonly had larger CHIP clones than age- and sex-matched controls. Further studies are warranted to identify causality between AVS and CHIP.


Assuntos
Estenose da Valva Aórtica , Calcinose , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Hematopoiese Clonal , Esclerose/patologia , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Calcinose/patologia
13.
Ann Lab Med ; 44(3): 195-209, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38221747

RESUMO

Circulating tumor DNA (ctDNA) has emerged as a promising tool for various clinical applications, including early diagnosis, therapeutic target identification, treatment response monitoring, prognosis evaluation, and minimal residual disease detection. Consequently, ctDNA assays have been incorporated into clinical practice. In this review, we offer an in-depth exploration of the clinical implementation of ctDNA assays. Notably, we examined existing evidence related to pre-analytical procedures, analytical components in current technologies, and result interpretation and reporting processes. The primary objective of this guidelines is to provide recommendations for the clinical utilization of ctDNA assays.


Assuntos
DNA Tumoral Circulante , Humanos , DNA Tumoral Circulante/genética , Biomarcadores Tumorais/genética , Prognóstico , Neoplasia Residual/genética , Mutação , Sequenciamento de Nucleotídeos em Larga Escala
14.
Cancer Res Treat ; 56(1): 314-323, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37475138

RESUMO

PURPOSE: We designed and evaluated the clinical performance of a plasma circulating tumor DNA (ctDNA) panel of 112 genes in various subtypes of lymphoma. MATERIALS AND METHODS: Targeted deep sequencing with an error-corrected algorithm was performed in ctDNA from plasma samples that were collected before treatment in 42 lymphoma patients. Blood buffy coat was utilized as a germline control. We evaluated the targeted gene panel using mutation detection concordance on the plasma samples with matched tissue samples analyzed the mutation profiles of the ctDNA. RESULTS: Next-generation sequencing analysis using matched tissue samples was available for 18 of the 42 patients. At least one mutation was detected in the majority of matched tissue biopsy samples (88.9%) and plasma samples (83.3%). A considerable number of mutations (40.4%) that were detected in the tissue samples were also found in the matched plasma samples. Majority of patients (21/42) were diffuse large B cell lymphoma patients. The overall detection rate of ctDNA in patients was 85.7% (36/42). The frequently mutated genes included PIM1, TET2, BCL2, KMT2D, KLHL6, HIST1H1E, and IRF8. A cutoff concentration (4,506 pg/mL) of ctDNA provided 88.9% sensitivity and 82.1% specificity to predict ctDNA mutation detection. The ctDNA concentration correlated with elevated lactate dehydrogenase level and the disease stage. CONCLUSION: Our design panel can detect many actionable gene mutations, including those at low frequency. Therefore, liquid biopsy can be applied clinically in the evaluation of lymphoma patients, especially in aggressive lymphoma patients.


Assuntos
DNA Tumoral Circulante , Linfoma , Humanos , DNA Tumoral Circulante/genética , Biópsia Líquida , Mutação , Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala
15.
Epilepsia ; 65(3): 766-778, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38073125

RESUMO

OBJECTIVE: We aimed to identify common genes and recurrent causative variants in a large group of Asian patients with different epilepsy syndromes and subgroups. METHODS: Patients with unexplained pediatric-onset epilepsy were identified from the in-house Severance Neurodevelopmental Disorders and Epilepsy Database. All patients underwent either exome sequencing or multigene panels from January 2017 to December 2019, at Severance Children's Hospital in Korea. Clinical data were extracted from the medical records. RESULTS: Of the 957 patients studied, 947 (99.0%) were Korean and 570 were male (59.6%). The median age at testing was 4.91 years (interquartile range, 1.53-9.39). The overall diagnostic yield was 32.4% (310/957). Clinical exome sequencing yielded a diagnostic rate of 36.9% (134/363), whereas the epilepsy panel yielded a diagnostic rate of 29.9% (170/569). Diagnostic yield differed across epilepsy syndromes. It was high in Dravet syndrome (87.2%, 41/47) and early infantile developmental epileptic encephalopathy (60.7%, 17/28), but low in West syndrome (21.8%, 34/156) and myoclonic-atonic epilepsy (4.8%, 1/21). The most frequently implicated genes were SCN1A (n = 49), STXBP1 (n = 15), SCN2A (n = 14), KCNQ2 (n = 13), CDKL5 (n = 11), CHD2 (n = 9), SLC2A1 (n = 9), PCDH19 (n = 8), MECP2 (n = 6), SCN8A (n = 6), and PRRT2 (n = 5). The recurrent genetic abnormalities included 15q11.2 deletion/duplication (n = 9), Xq28 duplication (n = 5), PRRT2 deletion (n = 4), MECP2 duplication (n = 3), SCN1A, c.2556+3A>T (n = 3), and 2q24.3 deletion (n = 3). SIGNIFICANCE: Here we present the results of a large-scale study conducted in East Asia, where we identified several common genes and recurrent variants that varied depending on specific epilepsy syndromes. The overall genetic landscape of the Asian population aligns with findings from other populations of varying ethnicities.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Síndromes Epilépticas , Espasmos Infantis , Criança , Humanos , Masculino , Pré-Escolar , Feminino , Epilepsia/genética , Epilepsia/diagnóstico , Espasmos Infantis/genética , Espasmos Infantis/diagnóstico , Epilepsias Mioclônicas/genética , Fenótipo , Mutação , Protocaderinas
16.
Cancer Res ; 84(3): 468-478, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038965

RESUMO

Circulating tumor DNA (ctDNA) may aid in personalizing ovarian cancer therapeutic options. Here, we aimed to assess the clinical utility of serial ctDNA testing using tumor-naïve, small-sized next-generation sequencing (NGS) panels. A total of 296 patients, including 201 with ovarian cancer and 95 with benign or borderline disease, were enrolled. Samples were collected at baseline (initial diagnosis or surgery) and every 3 months after that, resulting in a total of 811 blood samples. Patients received adjuvant therapy based on the current standard of care. Cell-free DNA was extracted and sequenced using an NGS panel of 9 genes: TP53, BRCA1, BRCA2, ARID1A, CCNE1, KRAS, MYC, PIK3CA, and PTEN. Pathogenic somatic mutations were identified in 69.2% (139/201) of patients with ovarian cancer at baseline but not in those with benign or borderline disease. Detection of ctDNA at baseline and/or at 6 months follow-up was predictive of progression-free survival (PFS). PFS was significantly poorer in patients with detectable pathogenic mutations at baseline that persisted at follow-up than in patients that converted from having detectable ctDNA at baseline to being undetectable at follow-up; survival did not differ between patients without pathogenic ctDNA mutations in baseline or follow-up samples and those that converted from ctDNA positive to negative. Disease recurrence was also detected earlier with ctDNA than with conventional radiologic assessment or CA125 monitoring. These findings demonstrate that serial ctDNA testing could effectively monitor patients and detect minimal residual disease, facilitating early detection of disease progression and tailoring of adjuvant therapies for ovarian cancer treatment. SIGNIFICANCE: In ovarian cancer, serial circulating tumor DNA testing is a highly predictive marker of patient survival, with a significantly improved recurrence detection lead time compared with conventional monitoring tools.


Assuntos
DNA Tumoral Circulante , Neoplasias Ovarianas , Humanos , Feminino , DNA Tumoral Circulante/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Biomarcadores Tumorais/genética , Mutação
17.
Ann Lab Med ; 44(4): 335-342, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145892

RESUMO

Background: The three best-known NUP214 rearrangements found in leukemia (SET:: NUP214, NUP214::ABL1, and DEK::NUP214) are associated with treatment resistance and poor prognosis. Mouse experiments have shown that NUP214 rearrangements alone are insufficient for leukemogenesis; therefore, the identification of concurrent mutations is important for accurate assessment and tailored patient management. Here, we characterized the demographic characteristics and concurrent mutations in patients harboring NUP214 rearrangements. Methods: To identify patients with NUP214 rearrangements, RNA-sequencing results of diagnostic bone marrow aspirates were retrospectively studied. Concurrent targeted next-generation sequencing results, patient demographics, karyotypes, and flow cytometry information were also reviewed. Results: In total, 11 patients harboring NUP214 rearrangements were identified, among whom four had SET::NUP214, three had DEK::NUP214, and four had NUP214::ABL1. All DEK::NUP214-positive patients were diagnosed as having AML. In patients carrying SET::NUP214 and NUP214::ABL1, T-lymphoblastic leukemia was the most common diagnosis (50%, 4/8). Concurrent gene mutations were found in all cases. PFH6 mutations were the most common (45.5%, 5/11), followed by WT1 (27.3%, 3/11), NOTCH1 (27.3%, 3/11), FLT3-internal tandem duplication (27.3%, 3/11), NRAS (18.2%, 2/11), and EZH2 (18.2%, 2/11) mutations. Two patients represented the second and third reported cases of NUP214::ABL1-positive AML. Conclusions: We examined the characteristics and concurrent test results, including gene mutations, of 11 leukemia patients with NUP214 rearrangement. We hope that the elucidation of the context in which they occurred will aid future research on tailored monitoring and treatment.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animais , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Estudos Retrospectivos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética
18.
Materials (Basel) ; 16(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959477

RESUMO

The development of high-performance concrete using carbon nanotubes (CNTs), which is used in various industries owing to its excellent mechanical properties, has attracted much attention, leading to ongoing research in this area. However, when mixing CNTs into cement paste, there has been limited focus on the dispersibility, and, in most cases, aqueous dispersions of CNTs used in other industrial sectors are used. Because CNTs form the structures of bundles or aggregates owing to their high aspect ratio and van der Waals force between particles, the desired dispersibility cannot be obtained when mixing CNTs in powder form with other materials. Therefore, in this study, we examined the applicability of CNT aqueous dispersions using PC-based plasticizer used in concrete. Aqueous dispersions of CNT using PC-based surfactants are prepared and their properties are compared with those of a PVP-based aqueous dispersion. To analyze the mechanical properties, the compressive strength and flexural strength are measured on the 28th day. Then, the dispersibility and microstructure are analyzed using scanning electron microscopy image analysis, thermogravimetric analysis, and BET (Brunauer-Emmett-Teller) analysis. The analysis results show the enhancement of mechanical properties due to the mixing of the CNT dispersion, and the results confirm the applicability of the proposed CNT aqueous dispersions using PC-based surfactants.

19.
Invest Ophthalmol Vis Sci ; 64(14): 27, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975847

RESUMO

Purpose: To determine the diagnostic potential of next-generation sequencing (NGS) in vitreous samples, analyze genotype-phenotype characteristics, and compare NGS of matched vitreous and brain samples in patients with associated central nervous system lymphoma (CNSL). Methods: A total of 32 patients suspected of vitreoretinal lymphoma (VRL) who underwent diagnostic vitrectomy and NGS were included in this retrospective observational case-series. Fresh vitreous specimens from diagnostic vitrectomy of VRL-suspected patients underwent NGS using a custom panel targeting 747 candidate genes for lymphoma. They also underwent malignancy cytology, interleukin (IL)-10/IL-6, immunoglobulin heavy chain (IGH)/immunoglobulin kappa light chain (IGK) monoclonality testing. MYD88 L265P mutation was examined from anterior chamber tap samples. The diagnosis of VRL was made based on typical clinical characteristics for VRL, as well as malignant cytology, IGH/IGK clonality, or IL-10/IL-6 > 1. Sensitivity and specificity of NGS were compared with conventional diagnostic tests. Brain tissues suspected of lymphoma were collected by stereotactic biopsy and underwent NGS. Genetic variations detected in NGS of vitreous and brain tissue specimens were compared. Results: The sensitivity values for cytology, IL-10/IL-6 > 1, clonality assays for IGH and IGK, MYD88 L265P detection in anterior chamber tap samples, and vitreous NGS were 0.23, 0.83, 0.68, 0.79, 0.67, and 0.85, with specificity values of 1.00, 0.83, 0.50, 0.25, 0.83, and 0.83, respectively. The sensitivity (0.85) of vitreous NGS was the highest compared to other conventional diagnostic tests for VRL. The most common mutations were MYD88 (91%), CDKN2A (36%), PIM1 (32%), IGLL5 (27%), and ETV6 (23%). Although several gene alterations demonstrated heterogeneity between the brain and eyes, some common mutational profiles were observed in matched vitreous and brain samples. Conclusions: Overall, NGS of the vitreous demonstrated high sensitivity among conventional diagnostic tests. VRL and CNSL appeared to have both shared and distinct genetic variations, which may suggest site-specific variations from a common origin.


Assuntos
Linfoma , Neoplasias da Retina , Humanos , Corpo Vítreo/patologia , Neoplasias da Retina/diagnóstico , Neoplasias da Retina/genética , Neoplasias da Retina/patologia , Estudos Retrospectivos , Interleucina-6/genética , Interleucina-10/genética , Fator 88 de Diferenciação Mieloide , Biópsia , Linfoma/diagnóstico , Linfoma/patologia , Biópsia Líquida , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Genótipo
20.
BMC Med Genomics ; 16(1): 215, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697358

RESUMO

BACKGROUND: Hereditary hemolytic anemia (HHA) refers to a heterogeneous group of genetic disorders that share one common feature: destruction of circulating red blood cells (RBCs). The destruction of RBCs may be due to membranopathies, enzymopathies, or hemoglobinopathies. Because these are genetic disorders, incorporation of next-generation sequencing (NGS) has facilitated the diagnostic process of HHA. METHOD: Genetic data from 29 patients with suspected hereditary anemia in a tertiary hospital were retrospectively reviewed to evaluate the efficacy of NGS on hereditary anemia diagnosis. Targeted NGS was performed with custom probes for 497 genes associated with hematologic disorders. After genomic DNA was extracted from peripheral blood, prepared libraries were hybridized with capture probes and sequenced using NextSeq 550Dx (Illumina, San Diego, CA, USA). RESULT: Among the 29 patients, ANK1 variants were detected in five, four of which were pathogenic or likely pathogenic variants. SPTB variants were detected in six patients, five of which were classified as pathogenic or likely pathogenic variants. We detected g6pd pathogenic and spta1 likely pathogenic variants in two patients and one patient, respectively. Whole-gene deletions in both HBA1 and HBA2 were detected in two patients, while only HBA2 deletion was detected in one patient. One likely pathogenic variant in PLKR was detected in one patient, and one likely pathogenic variant in ALAS2 was detected in another. CONCLUSION: Here, NGS played a critical role in definitive diagnosis in 18 out of 29 patients (62.07%) with suspected HHA. Thus, its incorporation into the diagnostic workflow is crucial.


Assuntos
Anemia Hemolítica Congênita , Humanos , Criança , Estudos Retrospectivos , Anemia Hemolítica Congênita/diagnóstico , Anemia Hemolítica Congênita/genética , Eritrócitos , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas do Citoesqueleto , 5-Aminolevulinato Sintetase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...