Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(26): 39712-39722, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35107731

RESUMO

This study presents an economical and efficient method to decolourise dye wastewater using industrial waste stainless steel slag (SSS). Titanium dioxide was immobilised on SSS by a precipitation-calcination method. Samples with different TiO2 loadings (prepared using either titanium isopropoxide precursor or commercial TiO2 nanoparticles) were used to decolourise an organic contaminant (methylene blue) under dark and UV conditions in aqueous solution, and their adsorption and photocatalytic performances were compared. Samples with 15 and 25 TiO2 wt% prepared by the precursor method had normalised photocatalytic efficiencies per gram close to that of bare TiO2; using an adsorption-photocatalysis process led to efficiencies 4.4 and 1.6 times higher than that of pure TiO2. The improvement in catalytic performance (greater for samples with less than 50% TiO2 content) may be due to better UV absorption ability (related to with the improvement of TiO2 particle dispersion) and the close TiO2 support interaction, which can eventually cause a photocatalysis-enhancing shift towards more negative oxidation potentials. The SSS also acted as an efficient adsorption trap for organic compounds. The pollutant was thus transferred to the TiO2 surface and photodegraded more rapidly and efficiently. The outstanding synergetic adsorption-photocatalysis capacities of TiO2 waste stainless steel slag composites for dye water treatment made the proposed conversion approach have great potential in practical applications.


Assuntos
Aço Inoxidável , Purificação da Água , Adsorção , Catálise , Titânio , Águas Residuárias , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...