Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 258: 116328, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692223

RESUMO

Implantable bioelectronics, integrated directly within the body, represent a potent biomedical solution for monitoring and treating a range of medical conditions, including chronic diseases, neural disorders, and cardiac conditions, through personalized medical interventions. Nevertheless, contemporary implantable bioelectronics rely heavily on rigid materials (e.g., inorganic materials and metals), leading to inflammatory responses and tissue damage due to a mechanical mismatch with biological tissues. Recently, soft electronics with mechanical properties comparable to those of biological tissues have been introduced to alleviate fatal immune responses and improve tissue conformity. Despite their myriad advantages, substantial challenges persist in surgical handling and precise positioning due to their high compliance. To surmount these obstacles, softening implantable bioelectronics has garnered significant attention as it embraces the benefits of both rigid and soft bioelectronics. These devices are rigid for easy standalone implantation, transitioning to a soft state in vivo in response to environmental stimuli, which effectively overcomes functional/biological problems inherent in the static mechanical properties of conventional implants. This article reviews recent research and development in softening materials and designs for implantable bioelectronics. Examples featuring tissue-penetrating and conformal softening devices highlight the promising potential of these approaches in biomedical applications. A concluding section delves into current challenges and outlines future directions for softening implantable device technologies, underscoring their pivotal role in propelling the evolution of next-generation bioelectronics.


Assuntos
Materiais Biocompatíveis , Técnicas Biossensoriais , Próteses e Implantes , Humanos , Técnicas Biossensoriais/instrumentação , Materiais Biocompatíveis/química , Desenho de Equipamento , Animais
2.
Sci Adv ; 10(9): eadn1186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416839

RESUMO

Mechanically transformative electronic systems (TESs) built using gallium have emerged as an innovative class of electronics due to their ability to switch between rigid and flexible states, thus expanding the versatility of electronics. However, the challenges posed by gallium's high surface tension and low viscosity have substantially hindered manufacturability, limiting high-resolution patterning of TESs. To address this challenge, we introduce a stiffness-tunable gallium-copper composite ink capable of direct ink write printing of intricate TES circuits, offering high-resolution (~50 micrometers) patterning, high conductivity, and bidirectional soft-rigid convertibility. These features enable transformative bioelectronics with design complexity akin to traditional printed circuit boards. These TESs maintain rigidity at room temperature for easy handling but soften and conform to curvilinear tissue surfaces at body temperature, adapting to dynamic tissue deformations. The proposed ink with direct ink write printing makes TES manufacturing simple and versatile, opening possibilities in wearables, implantables, consumer electronics, and robotics.

3.
Nat Biomed Eng ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903901

RESUMO

The high stiffness of intravenous needles can cause tissue injury and increase the risk of transmission of blood-borne pathogens through accidental needlesticks. Here we describe the development and performance of an intravenous needle whose stiffness and shape depend on body temperature. The needle is sufficiently stiff for insertion into soft tissue yet becomes irreversibly flexible after insertion, adapting to the shape of the blood vessel and reducing the risk of needlestick injury on removal, as we show in vein phantoms and ex vivo porcine tissue. In mice, the needles had similar fluid-delivery performance and caused substantially less inflammation than commercial devices for intravenous access of similar size. We also show that an intravenous needle integrated with a thin-film temperature sensor can monitor core body temperature in mice and detect fluid leakage in porcine tissue ex vivo. Temperature-responsive intravenous needles may improve patient care.

4.
Adv Mater ; 34(44): e2204805, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36190163

RESUMO

Robotic skin with human-skin-like sensing ability holds immense potential in various fields such as robotics, prosthetics, healthcare, and industries. To catch up with human skin, numerous studies are underway on pressure sensors integrated on robotic skin to improve the sensitivity and detection range. However, due to the trade-off between them, existing pressure sensors have achieved only a single aspect, either high sensitivity or wide bandwidth. Here, an adaptive robotic skin is proposed that has both high sensitivity and broad bandwidth with an augmented pressure sensing ability beyond the human skin. A key for the adaptive robotic skin is a tunable pressure sensor built with uniform gallium microgranules embedded in an elastomer, which provides large tuning of the sensitivity and the bandwidth, excellent sensor-to-sensor uniformity, and high reliability. Through the mode conversion based on the solid-liquid phase transition of gallium microgranules, the sensor provides 97% higher sensitivity (16.97 kPa-1 ) in the soft mode and 262.5% wider bandwidth (≈1.45 MPa) in the rigid mode compared to the human skin. Successful demonstration of the adaptive robotic skin verifies its capabilities in sensing a wide spectrum of pressures ranging from subtle blood pulsation to body weight, suggesting broad use for various applications.


Assuntos
Gálio , Percepção do Tato , Humanos , Reprodutibilidade dos Testes , Pele , Tato
5.
Adv Mater ; 33(10): e2007239, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33491832

RESUMO

Electronics with tunable shape and stiffness can be applied in broad range of applications because their tunability allows their use in either rigid handheld form or soft wearable form, depending on needs. Previous research has enabled such reconfigurable electronics by integrating a thermally tunable gallium-based platform with flexible/stretchable electronics. However, supercooling phenomenon caused in the freezing process of gallium impedes reliable and rapid bidirectional rigid-soft conversion, limiting the full potential of this type of "transformative" electronics. Here, materials and electronics design strategies are reported to develop a transformative system with a gallium platform capable of fast reversible mechanical switching. In this electronic system, graphene is used as a catalyst to accelerate the heterogeneous nucleation of gallium to mitigate the degree of supercooling. Additionally, a flexible thermoelectric device is integrated as a means to provide active temperature control to further reduce the time for the solid-liquid transition of gallium. Analytical and experimental results establish the fundamentals for the design and optimized operation of transformative electronics for accelerated bidirectional transformation. Proof-of-concept demonstration of a reconfigurable system, which can convert between rigid handheld electronics and a flexible wearable biosensor, demonstrates the potential of this design approach for highly versatile electronics that can support multiple applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...