Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766022

RESUMO

Lachnospiraceae members were highly detected in dysbiotic IL-10 KO mice that displayed similar physiological outcomes as control mice. Lachnospiraceae is a highly diverse family of microbes that have been shown to display both commensal and pathogenic characteristics in the colon environment. We investigated the impact of genetic variation in five Lachnospiraceae strains on lowering cellular inflammation and ROS levels. Cell free spent media (CFSM) from Eubacterium rectale resulted in lowered ROS, and nitric oxide levels in stressed colon cells. We demonstrated through an array of multi-omics and molecular techniques that glutathione (GSH) biosynthesized by E. rectale was able to alleviate host ROS damage. We further showed downregulation of cell stress and immune response genes by host RNA sequencing, which is evidence that E. rectale microbial products promote recovery and alleviate ROS stress.

2.
J Exp Biol ; 227(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38073469

RESUMO

The gut microbiome is known to influence and have regulatory effects in diverse physiological functions of host animals, but only recently has the relationship between host thermal biology and gut microbiota been explored. Here, we examined how early-life manipulations of the gut microbiota in larval amphibians influenced their critical thermal maximum (CTmax) at different acclimation temperatures. We stripped the resident microbiome from egg masses of wild-caught wood frogs (Lithobates sylvaticus) via an antibiotic wash, and then inoculated the eggs with pond water (control), no inoculation, or the intestinal microbiota of another species that has a wider thermal tolerance - green frogs (Lithobates clamitans). We predicted that this cross-species transplant would increase the CTmax of the recipient wood frog larvae relative to the other treatments. In line with this prediction, green frog microbiome-recipient larvae had the highest CTmax while those with no inoculum had the lowest CTmax. Both the microbiome treatment and acclimation temperature significantly influenced the larval gut microbiota communities and α-diversity indices. Green frog microbiome-inoculated larvae were enriched in Rikenellaceae relative to the other treatments, which produce short-chain fatty acids and could contribute to greater energy availability and enhanced heat tolerance. Larvae that received no inoculation had a higher relative abundance of potentially pathogenic Aeromonas spp., which negatively affects host health and performance. Our results are the first to show that cross-species gut microbiota transplants alter heat tolerance in a predictable manner. This finding has repercussions for the conservation of species that are threatened by climate change and demonstrates a need to further explore the mechanisms by which the gut microbiota modulate host thermal tolerance.


Assuntos
Microbioma Gastrointestinal , Termotolerância , Animais , Larva/fisiologia , Aclimatação , Ranidae
3.
mSystems ; 8(6): e0070323, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37909786

RESUMO

IMPORTANCE: Inflammatory bowel disease is associated with an increase in Enterobacteriaceae and Enterococcus species; however, the specific mechanisms are unclear. Previous research has reported the associations between microbiota and inflammation, here we investigate potential pathways that specific bacteria populations use to drive gut inflammation. Richie et al. show that these bacterial populations utilize an alternate sulfur metabolism and are tolerant of host-derived immune-response products. These metabolic pathways drive host gut inflammation and fuel over colonization of these pathobionts in the dysbiotic colon. Cultured isolates from dysbiotic mice indicated faster growth supplemented with L-cysteine, showing these microbes can utilize essential host nutrients.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Aminoácidos , Colite/microbiologia , Inflamação , Doenças Inflamatórias Intestinais/tratamento farmacológico , Bactérias
4.
bioRxiv ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37987001

RESUMO

Background: Global change has accelerated the nitrogen cycle. Soil nitrogen stock degradation by microbes leads to the release of various gases, including nitrous oxide (N2O), a potent greenhouse gas. Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) participate in the soil nitrogen cycle, producing N2O. There are outstanding questions regarding the impact of environmental processes such as precipitation and land use legacy on AOA and AOB structurally, compositionally, and functionally. To answer these questions, we analyzed field soil cores and soil monoliths under varying precipitation profiles and land legacies. Results: We resolved 28 AOA and AOB metagenome assembled genomes (MAGs) and found that they were significantly higher in drier environments and differentially abundant in different land use legacies. We further dissected AOA and AOB functional potentials to understand their contribution to nitrogen transformation capabilities. We identified the involvement of stress response genes, differential metabolic functional potentials, and subtle population dynamics under different environmental parameters for AOA and AOB. We observed that AOA MAGs lacked a canonical membrane-bound electron transport chain and F-type ATPase but possessed A/A-type ATPase, while AOB MAGs had a complete complex III module and F-type ATPase, suggesting differential survival strategies of AOA and AOB. Conclusions: The outcomes from this study will enable us to comprehend how drought-like environments and land use legacies could impact AOA- and AOB-driven nitrogen transformations in soil.

5.
Microbiol Spectr ; : e0020823, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606438

RESUMO

Due to climate change, drought frequencies and severities are predicted to increase across the United States. Plant responses and adaptation to stresses depend on plant genetic and environmental factors. Understanding the effect of those factors on plant performance is required to predict species' responses to environmental change. We used reciprocal gardens planted with distinct regional ecotypes of the perennial grass Andropogon gerardii adapted to dry, mesic, and wet environments to characterize their rhizosphere communities using 16S rRNA metabarcode sequencing. Even though the local microbial pool was the main driver of these rhizosphere communities, the significant plant ecotypic effect highlighted active microbial recruitment in the rhizosphere, driven by ecotype or plant genetic background. Our data also suggest that ecotypes planted at their homesites were more successful in recruiting rhizosphere community members that were unique to the location. The link between the plants' homesite and the specific local microbes supported the "home field advantage" hypothesis. The unique homesite microbes may represent microbial specialists that are linked to plant stress responses. Furthermore, our data support ecotypic variation in the recruitment of congeneric but distinct bacterial variants, highlighting the nuanced plant ecotype effects on rhizosphere microbiome recruitment. These results improve our understanding of the complex plant host-soil microbe interactions and should facilitate further studies focused on exploring the functional potential of recruited microbes. Our study has the potential to aid in predicting grassland ecosystem responses to climate change and impact restoration management practices to promote grassland sustainability. IMPORTANCE In this study, we used reciprocal gardens located across a steep precipitation gradient to characterize rhizosphere communities of distinct dry, mesic, and wet regional ecotypes of the perennial grass Andropogon gerardii. We used 16S rRNA amplicon sequencing and focused oligotyping analysis and showed that even though location was the main driver of the microbial communities, ecotypes could potentially recruit distinct bacterial populations. We showed that different A. gerardii ecotypes were more successful in overall community recruitment and recruitment of microbes unique to the "home" environment, when growing at their "home site." We found evidence for "home-field advantage" interactions between the host and host-root-associated bacterial communities, and the capability of ecotypes to recruit specialized microbes that were potentially linked to plant stress responses. Our study aids in a better understanding of the factors that affect plant adaptation, improve management strategies, and predict grassland function under the changing climate.

6.
Anim Microbiome ; 5(1): 35, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461084

RESUMO

BACKGROUND: Archaea perform critical roles in the microbiome system, including utilizing hydrogen to allow for enhanced microbiome member growth and influencing overall host health. With the majority of microbiome research focusing on bacteria, the functions of archaea are largely still under investigation. Understanding methanogenic functions during the host lifetime will add to the limited knowledge on archaeal influence on gut and host health. In our study, we determined lifelong archaea dynamics, including detection and methanogenic functions, while assessing global, temporal and host distribution of our novel archaeal metagenome-assembled genomes (MAGs). We followed 7 monogastric swine throughout their life, from birth to adult (1-156 days of age), and collected feces at 22 time points. The samples underwent gDNA extraction, Illumina sequencing, bioinformatic quality and assembly processes, MAG taxonomic assignment and functional annotation. MAGs were utilized in downstream phylogenetic analysis for global, temporal and host distribution in addition to methanogenic functional potential determination. RESULTS: We generated 1130 non-redundant MAGs, representing 588 unique taxa at the species level, with 8 classified as methanogenic archaea. The taxonomic classifications were as follows: orders Methanomassiliicoccales (5) and Methanobacteriales (3); genera UBA71 (3), Methanomethylophilus (1), MX-02 (1), and Methanobrevibacter (3). We recovered the first US swine Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter gottschalkii MAGs. The Methanobacteriales MAGs were identified primarily during the young, preweaned host whereas Methanomassiliicoccales primarily in the adult host. Moreover, we identified our methanogens in metagenomic sequences from Chinese swine, US adult humans, Mexican adult humans, Swedish adult humans, and paleontological humans, indicating that methanogens span different hosts, geography and time. We determined complete metabolic pathways for all three methanogenic pathways: hydrogenotrophic, methylotrophic, and acetoclastic. This study provided the first evidence of acetoclastic methanogenesis in archaea of monogastric hosts which indicated a previously unknown capability for acetate utilization in methanogenesis for monogastric methanogens. Overall, we hypothesized that the age-associated detection patterns were due to differential substrate availability via the host diet and microbial metabolism, and that these methanogenic functions are likely crucial to methanogens across hosts. This study provided a comprehensive, genome-centric investigation of monogastric-associated methanogens which will further improve our understanding of microbiome development and functions.

7.
Sci Rep ; 13(1): 12241, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507482

RESUMO

Although many therapeutic options are available for inflammatory bowel disease (IBD), 5-aminosalicylic acid (5-ASA) is still the key medication, particularly for ulcerative colitis (UC). However, the mechanism of action of 5-ASA remains unclear. The intestinal microbiota plays an important role in the pathophysiology of IBD, and we hypothesized that 5-ASA alters the intestinal microbiota, which promotes the anti-inflammatory effect of 5-ASA. Because intestinal inflammation affects the gut microbiota and 5-ASA can change the severity of inflammation, assessing the impact of inflammation and 5-ASA on the gut microbiota is not feasible in a clinical study of patients with UC. Therefore, we undertook a translational study to demonstrate a causal link between 5-ASA administration and alterations of the intestinal microbiota. Furthermore, by rigorously controlling environmental confounders and excluding the effect of 5-ASA itself with a vertical transmission model, we observed that the gut microbiota altered by 5-ASA affected host mucosal immunity and decreased susceptibility to dextran sulfate sodium-induce colitis. Although the potential intergenerational transmission of epigenetic changes needs to be considered in this study, these findings suggested that alterations in the intestinal microbiota induced by 5-ASA directed the host immune system towards an anti-inflammatory state, which underlies the mechanism of 5-ASA efficacy.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Mesalamina/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Colo , Camundongos Endogâmicos C57BL
8.
Cell ; 186(9): 1846-1862.e26, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37028428

RESUMO

The use of probiotics by cancer patients is increasing, including among those undergoing immune checkpoint inhibitor (ICI) treatment. Here, we elucidate a critical microbial-host crosstalk between probiotic-released aryl hydrocarbon receptor (AhR) agonist indole-3-aldehyde (I3A) and CD8 T cells within the tumor microenvironment that potently enhances antitumor immunity and facilitates ICI in preclinical melanoma. Our study reveals that probiotic Lactobacillus reuteri (Lr) translocates to, colonizes, and persists within melanoma, where via its released dietary tryptophan catabolite I3A, it locally promotes interferon-γ-producing CD8 T cells, thereby bolstering ICI. Moreover, Lr-secreted I3A was both necessary and sufficient to drive antitumor immunity, and loss of AhR signaling within CD8 T cells abrogated Lr's antitumor effects. Further, a tryptophan-enriched diet potentiated both Lr- and ICI-induced antitumor immunity, dependent on CD8 T cell AhR signaling. Finally, we provide evidence for a potential role of I3A in promoting ICI efficacy and survival in advanced melanoma patients.


Assuntos
Limosilactobacillus reuteri , Melanoma , Microambiente Tumoral , Humanos , Dieta , Inibidores de Checkpoint Imunológico , Limosilactobacillus reuteri/metabolismo , Melanoma/terapia , Triptofano/metabolismo , Linfócitos T CD8-Positivos/imunologia , Receptores de Hidrocarboneto Arílico/agonistas
9.
Genome Biol ; 24(1): 78, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069665

RESUMO

BACKGROUND: Changes in microbial community composition as a function of human health and disease states have sparked remarkable interest in the human gut microbiome. However, establishing reproducible insights into the determinants of microbial succession in disease has been a formidable challenge. RESULTS: Here we use fecal microbiota transplantation (FMT) as an in natura experimental model to investigate the association between metabolic independence and resilience in stressed gut environments. Our genome-resolved metagenomics survey suggests that FMT serves as an environmental filter that favors populations with higher metabolic independence, the genomes of which encode complete metabolic modules to synthesize critical metabolites, including amino acids, nucleotides, and vitamins. Interestingly, we observe higher completion of the same biosynthetic pathways in microbes enriched in IBD patients. CONCLUSIONS: These observations suggest a general mechanism that underlies changes in diversity in perturbed gut environments and reveal taxon-independent markers of "dysbiosis" that may explain why widespread yet typically low-abundance members of healthy gut microbiomes can dominate under inflammatory conditions without any causal association with disease.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Transplante de Microbiota Fecal , Metagenômica , Aminoácidos , Fezes
10.
Microorganisms ; 11(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36838283

RESUMO

The oral microbiome is an emerging field that has been a topic of discussion since the development of next generation sequencing and the implementation of the human microbiome project. This article reviews the current literature surrounding the oral microbiome, briefly highlighting most recent methods of microbiome characterization including cutting edge omics, databases for the microbiome, and areas with current gaps in knowledge. This article also describes reports on microorganisms contained in the oral microbiome which include viruses, archaea, fungi, and bacteria, and provides an in-depth analysis of their significant roles in tissue homeostasis. Finally, we detail key bacteria involved in oral disease, including oral cancer, and the current research surrounding their role in stimulation of inflammatory cytokines, the role of gingival crevicular fluid in periodontal disease, the creation of a network of interactions between microorganisms, the influence of the planktonic microbiome and cospecies biofilms, and the implications of antibiotic resistance. This paper provides a comprehensive literature analysis while also identifying gaps in knowledge to enable future studies to be conducted.

12.
Orphanet J Rare Dis ; 17(1): 416, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376984

RESUMO

BACKGROUND: Individuals with familial adenomatous polyposis (FAP) harbor numerous polyps with inevitable early progression to colon cancer. Complex microbiotic-tumor microenvironment perturbations suggest a dysbiotic relationship between polyp and microbiome. In this study, we performed comprehensive analyses of stool and tissue microbiome of pediatric FAP subjects and compared with unaffected cohabiting relatives through 16S V4 region amplicon sequencing and machine learning platforms. RESULTS: Within our FAP and control patient population, Firmicutes and Bacteroidetes were the predominant phyla in the tissue and stool samples, while Proteobacteria dominated the polyp/non-polyp mucosa. A decline in Faecalibacterium in polyps contrasted with a decline in Bacteroides in the FAP stool. The alpha- and beta-diversity indices differed significantly within the polyp/non-polyp groups, with a concurrent shift towards lower diversity in polyps. In a limited 3-year longitudinal study, the relative abundance of Proteobacteria and Fusobacteria was higher in polyps compared to non-polyp and stool specimens over time. Through machine learning, we discovered that Archaeon_enrichment_culture_clone_A13, Micrococcus_luteus, and Eubacterium_hallii in stool and PL-11B10, S1-80, and Blastocatellaceae in tissues were significantly different between patients with and without polyps. CONCLUSIONS: Detection of certain bacterial concentrations within stool or biopsied polyps could serve as adjuncts to current screening modalities to help identify higher-risk patients.


Assuntos
Polipose Adenomatosa do Colo , Microbiota , Humanos , Criança , Estudos Longitudinais , Polipose Adenomatosa do Colo/epidemiologia , Polipose Adenomatosa do Colo/patologia , Biópsia , Microambiente Tumoral
13.
BMC Genomics ; 23(1): 784, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36451103

RESUMO

BACKGROUND: Climate change will result in more frequent droughts that can impact soil-inhabiting microbiomes (rhizobiomes) in the agriculturally vital North American perennial grasslands. Rhizobiomes have contributed to enhancing drought resilience and stress resistance properties in plant hosts. In the predicted events of more future droughts, how the changing rhizobiome under environmental stress can impact the plant host resilience needs to be deciphered. There is also an urgent need to identify and recover candidate microorganisms along with their functions, involved in enhancing plant resilience, enabling the successful development of synthetic communities. RESULTS: In this study, we used the combination of cultivation and high-resolution genomic sequencing of bacterial communities recovered from the rhizosphere of a tallgrass prairie foundation grass, Andropogon gerardii. We cultivated the plant host-associated microbes under artificial drought-induced conditions and identified the microbe(s) that might play a significant role in the rhizobiome of Andropogon gerardii under drought conditions. Phylogenetic analysis of the non-redundant metagenome-assembled genomes (MAGs) identified a bacterial genome of interest - MAG-Pseudomonas. Further metabolic pathway and pangenome analyses recovered genes and pathways related to stress responses including ACC deaminase; nitrogen transformation including assimilatory nitrate reductase in MAG-Pseudomonas, which might be associated with enhanced drought tolerance and growth for Andropogon gerardii. CONCLUSIONS: Our data indicated that the metagenome-assembled MAG-Pseudomonas has the functional potential to contribute to the plant host's growth during stressful conditions. Our study also suggested the nitrogen transformation potential of MAG-Pseudomonas that could impact Andropogon gerardii growth in a positive way. The cultivation of MAG-Pseudomonas sets the foundation to construct a successful synthetic community for Andropogon gerardii. To conclude, stress resilience mediated through genes ACC deaminase, nitrogen transformation potential through assimilatory nitrate reductase in MAG-Pseudomonas could place this microorganism as an important candidate of the rhizobiome aiding the plant host resilience under environmental stress. This study, therefore, provided insights into the MAG-Pseudomonas and its potential to optimize plant productivity under ever-changing climatic patterns, especially in frequent drought conditions.


Assuntos
Andropogon , Poa , Rizosfera , Secas , Pseudomonas , Filogenia , Nitrogênio , Nitrato Redutases
14.
Sci Rep ; 12(1): 15080, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064754

RESUMO

The gut microbiome plays important roles in the maintenance of health and pathogenesis of diseases in the growing host. In order to fully comprehend the interplay of the gut microbiome and host, a foundational understanding of longitudinal microbiome, including bacteria and fungi, development is necessary. In this study, we evaluated enteric microbiome and host dynamics throughout the lifetime of commercial swine. We collected a total of 234 fecal samples from ten pigs across 31 time points in three developmental stages (5 preweaning, 15 nursery, and 11 growth adult). We then performed 16S rRNA gene amplicon sequencing for bacterial profiles and qPCR for the fungus Kazachstania slooffiae. We identified distinct bacteriome clustering according to the host developmental stage, with the preweaning stage exhibiting low bacterial diversity and high volatility amongst samples. We further identified clusters of bacteria that were considered core, increasing, decreasing or stage-associated throughout the host lifetime. Kazachstania slooffiae was absent in the preweaning stage but peaked during the nursery stage of the host. We determined that all host growth stages contained negative correlations between K. slooffiae and bacterial genera, with only the growth adult stage containing positive correlates. Our stage-associated bacteriome results suggested the neonate contained a volatile gut microbiome. Upon weaning, the microbiome became relatively established with comparatively fewer perturbations in microbiome composition. Differential analysis indicated bacteria might play distinct stage-associated roles in metabolism and pathogenesis. The lack of positive correlates and shared K. slooffiae-bacteria interactions between stages warranted future research into the interactions amongst these kingdoms for host health. This research is foundational for understanding how bacteria and fungi develop singularly, as well as within a complex ecosystem in the host's gut environment.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias , Fezes/microbiologia , Fungos/genética , RNA Ribossômico 16S/genética , Saccharomycetales , Suínos
15.
mSystems ; 7(5): e0029322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35968975

RESUMO

Animals colonized with a defined microbiota represent useful experimental systems to investigate microbiome function. The altered Schaedler flora (ASF) represents a consortium of eight murine bacterial species that have been used for more than 4 decades where the study of mice with a reduced microbiota is desired. In contrast to germ-free mice, or mice colonized with only one or two species, ASF mice show the normal gut structure and immune system development. To further expand the utility of the ASF, we have developed technical and bioinformatic resources to enable a systems-based analysis of microbiome function using this model. Here, we highlighted four distinct applications of these resources that enable and improve (i) measurements of the abundance of each ASF member by quantitative PCR; (ii) exploration and comparative analysis of ASF genomes and the metabolic pathways they encode that comprise the entire gut microbiome; (iii) global transcriptional profiling to identify genes whose expression responds to environmental changes within the gut; and (iv) discovery of genetic changes resulting from the evolutionary adaptation of the microbiota. These resources were designed to be accessible to a broad community of researchers that, in combination with conventionally-reared mice (i.e., with complex microbiome), should contribute to our understanding of microbiome structure and function. IMPORTANCE Improved experimental systems are needed to advance our understanding of how the gut microbiome influences processes of the mammalian host as well as microbial community structure and function. An approach that is receiving considerable attention is the use of animal models that harbor a stable microbiota of known composition, i.e., defined microbiota, which enables control over an otherwise highly complex and variable feature of mammalian biology. The altered Schaedler flora (ASF) consortium is a well-established defined microbiota model, where mice are stably colonized with 8 distinct murine bacterial species. To take better advantage of the ASF, we established new experimental and bioinformatics resources for researchers to make better use of this model as an experimental system to study microbiome function.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbiota/genética , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Bactérias/genética , Reação em Cadeia da Polimerase , Mamíferos/genética
16.
Microbiol Spectr ; 10(3): e0239121, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35442065

RESUMO

Environmental change, especially frequent droughts, is predicted to detrimentally impact the North American perennial grasslands. Consistent dry spells will affect plant communities as well as their associated rhizobiomes, possibly altering the plant host performance under environmental stress. Therefore, there is a need to understand the impact of drought on the rhizobiome, and how the rhizobiome may modulate host performance and ameliorate its response to drought stress. In this study, we analyzed bacterial and fungal communities in the rhizospheres of three ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii. The ecotypes were established in 2010 in a common garden design and grown for a decade under persistent dry conditions at the arid margin of the species' range in Colby, Kansas. The experiment aimed to answer whether and to what extent do the different ecotypes maintain or recruit distinct rhizobiomes after 10 years in an arid climate. In order to answer this question, we screened the bacterial and fungal rhizobiome profiles of the ecotypes under the arid conditions of western Kansas as a surrogate for future climate environmental stress using 16S rRNA and ITS2 metabarcoding sequencing. Under these conditions, bacterial communities differed compositionally among the A. gerardii ecotypes, whereas the fungal communities did not. The ecotypes were instrumental in driving the differences among bacterial rhizobiomes, as the ecotypes maintained distinct bacterial rhizobiomes even after 10 years at the edge of the host species range. This study will aid us to optimize plant productivity through the use of different ecotypes under future abiotic environmental stress, especially drought. IMPORTANCE In this study, we used a 10-year long reciprocal garden system, and reports that different ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii can maintain or recruit distinct bacterial but not fungal rhizobiomes after 10 years in an arid environment. We used both 16S rRNA and ITS2 amplicons to analyze the bacterial and fungal communities in the rhizospheres of the respective ecotypes. We showed that A. gerardii might regulate the bacterial community to adapt to the arid environment, in which some ecotypes were not adapted to. Our study also suggested a possible tradeoff between the generalist and the specialist bacterial communities in specific environments, which could benefit the plant host. Our study will provide insights into the plant host regulation of the rhizosphere bacterial and fungal communities, especially during frequent drought conditions anticipated in the future.


Assuntos
Andropogon , Micobioma , Andropogon/genética , Bactérias/genética , Ecótipo , Poaceae/genética , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
17.
Front Microbiol ; 13: 801864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154052

RESUMO

Microbial interactions in natural environments are intricately complex. High numbers and rich diversity of microorganisms, along with compositional heterogeneities complicate the cause. It is essential to simplify these complex communities to understand the microbial interactions. We proposed a concept of "simple state community," which represents a subset of microbes and/or microbial functions of the original population that is necessary to build a stable community. By combining microbial culturing and high-throughput sequencing, we can better understand microbe-microbe and microbe-host interactions. To support our proposed model, we used carbon-based and nitrogen-based media to capture the simple state communities. We used 16S rRNA amplicon sequencing and assigned taxonomic identity to the bacterial populations before and after simple state communities. We showed that simple state communities were a subset of the original microbial communities at both phyla and genera level. We further used shotgun metagenomics to gain insights into the functional potential of the assembled simple state communities. Our proposed model supported the goal of simplifying the complex communities across diverse systems to provide opportunity to facilitate comprehension of both the structure and function of the subset communities. Further applications of the concept include the high-throughput screening of simple state communities using the BIOLOG® system and continuous culturing (Chemostat). This concept has the potential to test diverse experimental hypotheses in simplified microbial communities, and further extend that knowledge to answer the overarching questions at a more holistic level.

18.
BMC Cancer ; 21(1): 808, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256732

RESUMO

BACKGROUND: Though the gut microbiome has been associated with efficacy of immunotherapy (ICI) in certain cancers, similar findings have not been identified for microbiomes from other body sites and their correlation to treatment response and immune related adverse events (irAEs) in lung cancer (LC) patients receiving ICIs. METHODS: We designed a prospective cohort study conducted from 2018 to 2020 at a single-center academic institution to assess for correlations between the microbiome in various body sites with treatment response and development of irAEs in LC patients treated with ICIs. Patients must have had measurable disease, ECOG 0-2, and good organ function to be included. Data was collected for analysis from January 2019 to October 2020. Patients with histopathologically confirmed, advanced/metastatic LC planned to undergo immunotherapy-based treatment were enrolled between September 2018 and June 2019. Nasal, buccal and gut microbiome samples were obtained prior to initiation of immunotherapy +/- chemotherapy, at development of adverse events (irAEs), and at improvement of irAEs to grade 1 or less. RESULTS: Thirty-seven patients were enrolled, and 34 patients were evaluable for this report. 32 healthy controls (HC) from the same geographic region were included to compare baseline gut microbiota. Compared to HC, LC gut microbiota exhibited significantly lower α-diversity. The gut microbiome of patients who did not suffer irAEs were found to have relative enrichment of Bifidobacterium (p = 0.001) and Desulfovibrio (p = 0.0002). Responders to combined chemoimmunotherapy exhibited increased Clostridiales (p = 0.018) but reduced Rikenellaceae (p = 0.016). In responders to chemoimmunotherapy we also observed enrichment of Finegoldia in nasal microbiome, and increased Megasphaera but reduced Actinobacillus in buccal samples. Longitudinal samples exhibited a trend of α-diversity and certain microbial changes during the development and resolution of irAEs. CONCLUSIONS: This pilot study identifies significant differences in the gut microbiome between HC and LC patients, and their correlation to treatment response and irAEs in LC. In addition, it suggests potential predictive utility in nasal and buccal microbiomes, warranting further validation with a larger cohort and mechanistic dissection using preclinical models. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03688347 . Retrospectively registered 09/28/2018.


Assuntos
Microbioma Gastrointestinal/fisiologia , Imunoterapia/métodos , Neoplasias Pulmonares/tratamento farmacológico , Feminino , Humanos , Masculino , Projetos Piloto , Estudos Prospectivos
19.
Gastroenterology ; 161(3): 940-952.e15, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111469

RESUMO

BACKGROUND & AIMS: Perturbations in the early-life gut microbiome are associated with increased risk for complex immune disorders like inflammatory bowel diseases. We previously showed that maternal antibiotic-induced gut dysbiosis vertically transmitted to offspring increases experimental colitis risk in interleukin (IL) 10 gene deficient (IL10-/-) mice, a finding that may result from the loss/lack of essential microbes needed for appropriate immunologic education early in life. Here, we aimed to identify key microbes required for proper development of the early-life gut microbiome that decrease colitis risk in genetically susceptible animals. METHODS: Metagenomic sequencing followed by reconstruction of metagenome-assembled genomes was performed on fecal samples of IL10-/- mice with and without antibiotic-induced dysbiosis to identify potential missing microbial members needed for immunologic education. One high-value target strain was then engrafted early and/or late into the gut microbiomes of IL10-/- mice with antibiotic-induced dysbiosis. RESULTS: Early-, but not late-, life engraftment of a single dominant Bacteroides strain of non-antibiotic-treated IL10-/- mice was sufficient to restore the development of the gut microbiome, promote immune tolerance, and prevent colitis in IL10-/- mice that had antibiotic-induced dysbiosis. CONCLUSIONS: Restitution of a keystone microbial strain missing in the early-life antibiotic-induced gut dysbiosis results in recovery of the microbiome, proper development of immune tolerance, and reduced risk for colitis in genetically prone hosts.


Assuntos
Bacteroides/crescimento & desenvolvimento , Colite/prevenção & controle , Colo/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Interleucina-10/deficiência , Animais , Antibacterianos , Bacteroides/imunologia , Colite/imunologia , Colite/metabolismo , Colite/microbiologia , Colo/imunologia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Disbiose , Fezes/microbiologia , Interações Hospedeiro-Patógeno , Tolerância Imunológica , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estudo de Prova de Conceito , Fatores de Tempo
20.
Cell Mol Gastroenterol Hepatol ; 11(2): 491-502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32835897

RESUMO

BACKGROUND & AIMS: Inflammatory bowel diseases (IBD) are chronic inflammatory disorders where predictive biomarkers for the disease development and clinical course are sorely needed for development of prevention and early intervention strategies that can be implemented to improve clinical outcomes. Since gut microbiome alterations can reflect and/or contribute to impending host health changes, we examined whether gut microbiota metagenomic profiles would provide more robust measures for predicting disease outcomes in colitis-prone hosts. METHODS: Using the interleukin (IL) 10 gene-deficient (IL10 KO) murine model where early life dysbiosis from antibiotic (cefoperozone [CPZ]) treated dams vertically transferred to pups increases risk for colitis later in life, we investigated temporal metagenomic profiles in the gut microbiota of post-weaning offspring and determined their relationship to eventual clinical outcomes. RESULTS: Compared to controls, offspring acquiring maternal CPZ-induced dysbiosis exhibited a restructuring of intestinal microbial membership in both bacteriome and mycobiome that was associated with alterations in specific functional subsystems. Furthermore, among IL10 KO offspring from CPZ-treated dams, several functional subsystems, particularly nitrogen metabolism, diverged between mice that developed spontaneous colitis (CPZ-colitis) versus those that did not (CPZ-no-colitis) at a time point prior to eventual clinical outcome. CONCLUSIONS: Our findings provide support that functional metagenomic profiling of gut microbes has potential and promise meriting further study for development of tools to assess risk and manage human IBD.


Assuntos
Colite/diagnóstico , Disbiose/complicações , Microbioma Gastrointestinal/imunologia , Interleucina-10/deficiência , Animais , Antibacterianos/administração & dosagem , Cefoperazona/administração & dosagem , Colite/imunologia , Colite/microbiologia , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Disbiose/imunologia , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Humanos , Interleucina-10/genética , Mucosa Intestinal/imunologia , Masculino , Metagenoma , Metagenômica , Camundongos , Camundongos Knockout , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...