Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Pers Med ; 13(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38138892

RESUMO

There is increasing evidence regarding the importance of vitamin D in the prognosis of coronavirus disease 2019 (COVID-19). Genetic variants in the vitamin D receptor (VDR) gene affect the response to vitamin D and have been linked to various diseases. This study investigated the associations of the major VDR genetic variants ApaI, FokI, and TaqI with the severity and long post-infection symptoms of COVID-19. In total, 100 Jordanian patients with confirmed COVID-19 were genotyped for the VDR ApaI, FokI, and TaqI variants using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. COVID-19 severity, the most commonly reported long-COVID-19 symptoms that lasted for >4 weeks from the onset of infection, and other variables were analyzed according to VDR genetic variants. In this study, ApaI and FokI polymorphisms showed no significant associations with COVID-19 severity (p > 0.05). However, a significant association was detected between the TaqI polymorphism and the severity of symptoms after infection with the SARS-CoV-2 virus (p = 0.04). The wild-type TaqI genotype was typically present in patients with mild illness, whereas the heterozygous TaqI genotype was present in asymptomatic patients. With regard to long-COVID-19 symptoms, the VDR heterozygous ApaI and wild-type TaqI genotypes were significantly associated with persistent fatigue and muscle pain after COVID-19 (p ˂ 0.05). Most carriers of the heterozygous ApaI genotype and carriers of the wild-type TaqI genotype reported experiencing fatigue and muscle pain that lasted for more than 1 month after the onset of COVID-19. Furthermore, the TaqI genotype was associated with persistent shortness of breath after COVID-19 (p = 0.003). Shortness of breath was more common among individuals with homozygous TaqI genotype than among individuals with the wild-type or heterozygous TaqI genotype. VDR TaqI is a possible genetic variant related to both COVID-19 severity and long-COVID-19 symptoms among Jordanian individuals. The associations between VDR TaqI polymorphisms and long-COVID-19 symptoms should be investigated in larger and more diverse ethnic populations.

2.
Pharmgenomics Pers Med ; 16: 847-857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724295

RESUMO

Background: N-acetyltransferase 2 (NAT2) enzyme is a Phase II drug-metabolizing enzyme that metabolizes different compounds. Genetic variations in NAT2 can influence the enzyme's activity and potentially lead to the development of certain diseases. Aim: This study aimed to investigate the association of NAT2 variants with the risk of Type II diabetes mellitus (T2DM) and the lipid profile among Jordanian patients. Methods: We sequenced the whole protein-coding region in NAT2 using Sanger's method among a sample of 45 Jordanian T2DM patients and 50 control subjects. Moreover, we analyzed the lipid profiles of the patients and examined any potential associations with NAT2 variants. Results: This study revealed that the heterozygous NAT2*13 C/T genotype is significantly (P = 0.03) more common among T2DM (44%) than non-T2DM subjects (23.5%). Furthermore, the frequency of homozygous NAT2*13 T/T genotype was found to be significantly higher (P = 0.03) among T2DM patients (26.7%) compared to that of non-T2DM subjects (11%). The heterozygous NAT2*7 G/A genotype was exclusively observed in T2DM patients (11.1%) and absent in the control non-T2DM group. Moreover, among T2DM patients, those with a homozygous NAT2*11 T/T genotype exhibited significantly higher levels of triglycerides (381.50 ± 9.19 ng/dL) with a P value of 0.01 compared to those with heterozygous NAT2*11 C/T (136.23 ± 51.12 ng/dL) or wild-type NAT2*11 C/C (193.65 ± 109.89 ng/dL) genotypes. T2DM patients with homozygous NAT2*12 G/G genotype had a significantly (P = 0.04) higher triglyceride levels (275.67 ± 183.42 ng/dL) than the heterozygous NAT2*12 A/G (140.02 ± 49.53 ng/dL) and the wild NAT2*12 A/A (193.65 ± 109.89 ng/dL). Conclusion: The finding in this study suggests that the NAT2 gene is a potential biomarker for the development of T2DM and changes in triglyceride levels among Jordanians. However, it is important to note that our sample size was limited; therefore, further clinical studies with a larger cohort are necessary to validate these findings.

3.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37111350

RESUMO

Although the functional roles of M1 and M2 macrophages in the immune response and drug resistance are important, the expression and role of cytochrome P450s (CYPs) in these cells remain largely unknown. Differential expression of the 12 most common CYPs (CYP1A1, 1A2, 1B1, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2J2, 3A4, and 3A5) were screened in THP-1-cell-derived M1 and M2 macrophages using reverse transcription PCR. CYP2C19 was highly expressed in THP-1-cell-derived M2 macrophages, but it was negligibly expressed in THP-1-cell-derived M1 macrophages at the mRNA and protein levels as analyzed by reverse transcription quantitative PCR and Western blot, respectively. CYP2C19 enzyme activity was also very high in THP-1-cell-derived M2 compared to M1 macrophages (> 99%, p < 0.01), which was verified using inhibitors of CYP2C19 activity. Endogenous levels of the CYP2C19 metabolites 11,12-epoxyeicosatrienoic acid (11,12-EET) and 14,15-EET were reduced by 40% and 50% in cells treated with the CYP2C19 inhibitor and by 50% and 60% in the culture medium, respectively. Both 11,12-EET and 14,15-EET were identified as PPARγ agonists in an in vitro assay. When THP-1-cell-derived M2 cells were treated with CYP2C19 inhibitors, 11,12- and 14,15-EETs were significantly reduced, and in parallel with the reduction of these CYP2C19 metabolites, the expression of M2 cell marker genes was also significantly decreased (p < 0.01). Therefore, it was suggested that CYP2C19 may contribute to M2 cell polarization by producing PPARγ agonists. Further studies are needed to understand the endogenous role of CYP2C19 in M2 macrophages with respect to immunologic function and cell polarization.

4.
J Pers Med ; 12(9)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36143273

RESUMO

Genetic polymorphisms affect lipid profiles and are associated with disease complications. Genetic variants in the vitamin D receptor (VDR) gene are associated with type 2 diabetes mellitus (T2DM). In this study, we investigated the effects of VDR genotypes on the lipid profile and disease complications of T2DM patients in a Jordanian population. Ninety T2DM patients were genotyped for four major functional VDR genetic variants, rs2228570 C > T (FokI), rs7975232 A > C (ApaI), rs731236 T > C (TaqI), and rs1544410 C > T (BsmI), using the polymerase chain reaction−restriction fragment length polymorphism method. Lipid profiles and diabetes complications were analyzed and correlated with VDR genotypes. We found that the VDR rs7975232 and rs1544410 alleles were significantly (p = 0.008−0.04) associated with high-density lipoprotein (HDL) levels and retinopathy among patients. Carriers of the rs7975232 A/A genotype exhibited higher levels (49.68 ± 15.86 mg/dL) of HDL than patients with the A/C (44.73 ± 13.38 mg/dL) and C/C (37.93 ± 9.22 mg/dL) genotypes. Moreover, carriers of the rs1544410 T/T genotype had higher levels of HDL (54.31 ± 16.45 mg/dL) than patients with the C/T (43.57 ± 13.24 mg/dL) and C/C (43.98 ± 13.17 mg/dL) genotypes. T2DM patients who carry the rs7975232 C/C genotype were at higher risk (odds ratio [OR] = 7.88) of developing retinopathy compared with carriers of the rs7975232 C/A and A/A genotypes. In addition, T2DM patients with the rs1544410 C/C genotype had a higher risk (OR = 4.21) of developing retinopathy than patients with the rs1544410 C/T and T/T genotypes. Therefore, we concluded that the VDR rs7975232 and rs1544410 alleles were associated with HDL levels and retinopathy and can be considered as potential genetic biomarkers for the lipid profile and retinopathy complication among T2DM patients in a Jordanian population of Arabic origin. Further studies with larger sample sizes are needed to confirm our findings.

5.
J Pers Med ; 12(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055419

RESUMO

The application of personalized medicine (PM) is rapidly evolving [...].

6.
Curr Pharm Des ; 28(4): 324-330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33121403

RESUMO

BACKGROUND: Oxandrolone is a synthetic testosterone analog that is widely used among bodybuilders and athletes. However, oxandrolone causes male infertility. Recently, it was found that metformin reduces the risk of infertility associated with diabetes mellitus. AIM: This study aimed to investigate the protective effects of metformin against oxandrolone-induced infertility in male rats. METHODS: Rats continuously received one of four treatments (n=7) over 14 days: control DMSO administration, oxandrolone administration, metformin administration, or co-administration of oxandrolone and metformin. Doses were equivalent to those used for human treatment. Subsequently, testicular and blood samples were collected for morphological, biochemical, and histological examination. In addition, gene expression of the testosterone synthesizing enzyme CYP11A1 was analyzed in the testes using RT-PCR. RESULTS: Oxandrolone administration induced male infertility by significantly reducing relative weights of testes by 48%, sperm count by 82%, and serum testosterone levels by 96% (ANOVA, P value < 0.05). In addition, histological examination determined that oxandrolone caused spermatogenic arrest, which was associated with 2-fold downregulation of testicular CYP11A1 gene expression. However, co-administration of metformin with oxandrolone significantly ameliorated toxicological alterations induced by oxandrolone exposure (ANOVA, P-value < 0.05). CONCLUSION: Metformin administration provided protection against oxandrolone-induced infertility in male rats. Further clinical studies are needed to confirm the protective effect of metformin against oxandrolone-induced infertility among athletes.


Assuntos
Infertilidade Masculina , Metformina , Animais , Humanos , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Oxandrolona/metabolismo , Oxandrolona/farmacologia , Ratos , Testículo , Testosterona
7.
Fundam Clin Pharmacol ; 36(1): 143-149, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33969534

RESUMO

Thiazolidinediones are well-known anti-diabetic drugs. However, they are not widely used due to their cardiotoxic effects. Therefore, in this study, we aimed to determine the molecular toxicological alterations induced in the mouse hearts after thiazolidinedione administration. Balb/c mice received doses clinically equivalent to those given to humans of the most commonly used thiazolidinediones, pioglitazone, and rosiglitazone for 30 days. After that, RNA samples were isolated from the hearts. The mRNA expression of cytochrome (cyp) p450 genes that synthesize the cardiotoxic 20-hydroxyeicosatetraenoic acid (20-HETE) in addition to 92 cardiotoxicity biomarker genes were analyzed using quantitative polymerase chain reaction array technique. The analysis demonstrated that thiazolidinediones caused a significant upregulation (p < 0.5) of the mRNA expression of cyp1a1, cyp4a12, itpr1, ccl7, ccr1, and b2 m genes. In addition, thiazolidinediones caused a significant (p < 0.05) downregulation of the mRNA expression of adra2a, bsn, col15a1, fosl1, Il6, bpifa1, plau, and reg3b genes. The most affected gene was itpr1 gene, which was upregulated by pioglitazone and rosiglitazone by sevenfold and 3.5-fold, respectively. In addition, pioglitazone caused significant upregulation of (p < 0.05) hamp, ppbp, psma2, sik1, timp1, and ucp1 genes, which were not affected significantly (p > 0.05) by rosiglitazone administration. In conclusion, this study showed that thiazolidinediones induce toxicological molecular alterations in the mouse hearts, such as the induction of cyp450s that synthesize 20-HETE, chemokine activation, inflammatory responses, blood clotting, and oxidative stress. These findings may help us understand the mechanism of cardiotoxicity involved in thiazolidinedione administration.


Assuntos
Preparações Farmacêuticas , Tiazolidinedionas , Animais , Glicoproteínas , Hipoglicemiantes/toxicidade , Camundongos , Fosfoproteínas , Rosiglitazona/toxicidade , Tiazolidinedionas/toxicidade
8.
J Pers Med ; 11(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34683082

RESUMO

State-of-the-art research on the human genome has produced remarkable research achievements in pharmacogenomics and functional genomics, and these research results are making an invaluable contribution to the advancement of personalized medicine [...].

9.
J Pers Med ; 11(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198586

RESUMO

UDP-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that metabolize endogenous fatty acids such as arachidonic acid metabolites, as well as many prescription drugs, such as opioids, antiepileptics, and antiviral drugs. The UGT1A and 2B genes are highly polymorphic, and their genetic variants may affect the pharmacokinetics and hence the responses of many drugs and fatty acids. This study collected data and updated the current view of the molecular functionality of genetic variants on UGT genes that impact drug responses and the susceptibility to human diseases. The functional information of UGT genetic variants with clinical associations are essential to understand the inter-individual variation in drug responses and susceptibility to toxicity.

10.
J Pers Med ; 11(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799763

RESUMO

Estrogen sulfotransferase (SULT1E1) is a phase II enzyme that sulfates estrogens to inactivate them and regulate their homeostasis. This enzyme is also involved in the sulfation of thyroid hormones and several marketed medicines. Though the profound action of SULT1E1 in molecular/pathological biology has been extensively studied, its genetic variants and functional studies have been comparatively rarely studied. Genetic variants of this gene are associated with some diseases, especially sex-hormone-related cancers. Comprehending the role and polymorphisms of SULT1E1 is crucial to developing and integrating its clinical relevance; therefore, this study gathered and reviewed various literature studies to outline several aspects of the function, molecular regulation, and polymorphisms of SULT1E1.

11.
J Pers Med ; 11(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922216

RESUMO

Total serum immunoglobulin E (IgE) is elevated in multiple allergic diseases and is considered a good predictor of atopy. Several studies have been performed on the association of IgE levels with the polymorphism of the ADAM33 gene in asthmatic patients. The aim of this study was to determine whether there is an association between IgE levels and the genetic polymorphisms of the ADAM33 gene (T1, T2, T + 1, V4, S1, S2, and Q-1) in both healthy and asthmatic patients among Jordanians. The clinical data were collected for this case-control study from 267 asthmatic patients and 225 control subjects. Seven genetic polymorphisms (T1, T2, T + 1, V4, S1, S2, and Q-1) of the gene ADAM33 were analyzed using the polymerase chain reaction/restriction fragment length polymorphism method. The minor alleles (G) of T1, (A) of T2, T + 1, and (G) of V4 polymorphisms were associated with a significant increase in total serum IgE levels in adults but not children. The V4 genetic polymorphism, however, showed a significant association with IgE levels in both adults and children. The S1 polymorphism was significantly associated with the codominant module only in the adults. The S2 polymorphism showed a significant association (p-value < 0.05) in both codominant and recessive models. However, in the dominant model for both pediatric control and asthmatic patients, the association between the IgE and S2 polymorphism was insignificant (p-value = 0.7271 and 0.5259, respectively). This study found a statistically significant association between multiple ADAM33 genetic polymorphisms and IgE levels. Such findings add to the growing evidence that the ADAM33 gene has a major impact on IgE levels among asthmatic patients of Jordanian origin.

12.
Biochem Biophys Res Commun ; 553: 154-159, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33773137

RESUMO

The glucocorticoid receptor (GR) plays an important role in steroid-dependent regulation of metabolism, development, and the immune response in humans. Although GR is known to be activated by the binding of glucocorticoid, the mechanism of action is poorly understood. We investigated dimerization of GR in the cytoplasm and nuclear trans-localization in response to treatment with the ligand dexamethasone. GFP-tagged GR and FLAG-tagged GR were co-expressed in COS-1 cells, and cell lysates were subjected to co-immunoprecipitation assay with anti-GFP antibody to determine their dimerization. FLAG-GR was co-precipitated with GFP-GR in the cytoplasmic fraction of COS-1 cells. Treatment with the GR agonist dexamethasone significantly decreased the cytoplasmic interaction between FLAG- and GFP-GR, and significantly increased interaction of the GRs in the nuclear fraction. The two amino acids, Pro625 and Ile628 known to be located in GR-GR dimer interface, were mutated to alanine and the influence of the mutation on dimerization, ligand-dependent nuclear localization, and transcriptional activities were determined. Mutant GR showed a dramatic decrease in interaction in the cytoplasmic fraction and no detectable nuclear translocation in the presence or absence of dexamethasone. Furthermore, luciferase assays showed that mutant GR showed no detectable transcriptional activation via the GR-responsive DNA element (GRE) compared to the wild-type. Our results suggest that GR exists as a dimer in the cytoplasm and this dimerization may be essential for GRE-mediated transcriptional activation following ligand binding.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Multimerização Proteica , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Animais , Células COS , Núcleo Celular/efeitos dos fármacos , Chlorocebus aethiops , Citoplasma/efeitos dos fármacos , Dexametasona/metabolismo , Dexametasona/farmacologia , Humanos , Ligantes , Modelos Moleculares , Mutação , Multimerização Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores de Glucocorticoides/genética
13.
Toxics ; 9(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498426

RESUMO

Particulate matter (PM) is a major and the most harmful component of urban air pollution, which may adversely affect human health. PM exposure has been associated with several human diseases, notably respiratory and cardiovascular diseases. In particular, recent evidence suggests that exposure to biomass-derived PM associates with airway inflammation and can aggravate asthma and other allergic diseases. Defective or excess responsiveness in the immune system regulates distinct pathologies, such as infections, hypersensitivity, and malignancies. Therefore, PM-induced modulation of the immune system is crucial for understanding how it causes these diseases and highlighting key molecular mechanisms that can mitigate the underlying pathologies. Emerging evidence has revealed that immune responses to biomass-derived PM exposure are closely associated with the risk of diverse hypersensitivity disorders, including asthma, allergic rhinitis, atopic dermatitis, and allergen sensitization. Moreover, immunological alteration by PM accounts for increased susceptibility to infectious diseases, such as tuberculosis and coronavirus disease-2019 (COVID-19). Evidence-based understanding of the immunological effects of PM and the molecular machinery would provide novel insights into clinical interventions or prevention against acute and chronic environmental disorders induced by biomass-derived PM.

14.
Int J Clin Pract ; 75(5): e14036, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33512081

RESUMO

BACKGROUND: Human soluble epoxide hydrolase plays a major role in cardiovascular homoeostasis. Genetic variants in the EPHX2 gene among different ethnic groups are associated with cardiovascular complications, such as hypertension. However, no reports regarding the association of EPHX2 genotype with hypertension among type II diabetic (T2D) patients of Middle Eastern Jordanian origin exist. OBJECTIVE: The current study aimed to elucidate the association of the EPHX2 allele, genotype and haplotype with T2D, hypertension and parameters of lipid profile parameters among Jordanian T2D patients. METHODS: Ninety-three genomic DNA samples of non-diabetic controls and 97 samples from T2D patients were genotyped for EPHX2 rs4149243, rs2234914 and rs751142 genetic variants. The DNA samples were amplified using polymerase chain reaction (PCR) and then sequenced using Applied Biosystems Model (ABI3730x1). The functionality of intronic EPHX2 variants was predicted using the in silico Berkely Drosophila Genome Project software. RESULTS: We found no significant (P >.05) association between the EPHX2 rs4149243, rs2234914 and rs751142 allele, genotype and haplotype and the incidence of T2D and hypertension. Additionally, no association (P >.05) between these EPHX2 genetic variants with the baseline total cholesterol, low- and high-density lipoproteins and triglycerides among both non-diabetic and diabetic volunteers was found. However, we found an inter-ethnic variation (χ2 -test, P value Ë‚ .05) in the allele frequency of the EPHX2 rs4149243 and rs2234914 variants between Jordanians and other ethnic populations. Also, the in silico Berkely Drosophila Genome Project software predicted that the intronic EPHX2 rs4149243 could alter the splicing of intron 7. CONCLUSIONS: It can be concluded from this study that EPHX2 rs4149243, rs2234914 and rs751142 genetic variants do not play a role in the development of T2D and hypertension among Jordanian T2D patients. Further genetic studies with larger sample sizes are needed to find out the association of other functional EPHX2 variants with cardiovascular diseases among T2D patients in Jordan.


Assuntos
Diabetes Mellitus Tipo 2 , Epóxido Hidrolases , Diabetes Mellitus Tipo 2/genética , Epóxido Hidrolases/genética , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Jordânia , Polimorfismo de Nucleotídeo Único/genética
15.
Int J Biochem Cell Biol ; 130: 105895, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33259947

RESUMO

Even though subclasses of macrophage have distinct roles during progression of infectious diseases, it remains poorly understood whether there is a subset-specific difference in drug responses. Here, we report that ABCG2 was expressed specifically in M2-like macrophages and that it controlled their efflux activities. Abcg2 expression is markedly induced during polarization of PMA-primed macrophages toward an M2 type. IL-4 and IL-13 induced Pparg expression through STAT6 and PPARγ in turn acted on the Abcg2 promoter for its transcription activation. Once polarized to M2-like macrophages, these cells had sustained PPARγ transcription activation of Abcg2 gene. Accordingly, interruption of this machinery by T0070907, an inverse agonist of PPARγ, was shown to be effective in Abcg2 downregulation and its efflux activity in M2-like macrophages. Taken together, our results implicate that ABCG2 of M2 macrophages may function as an important pump that plays a potential role in drug efflux and that T0070907 may be used to increase the efficacy of M2 macrophage-targeting drugs such as antibiotics.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Benzamidas/farmacologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Proteínas de Neoplasias/metabolismo , PPAR gama/antagonistas & inibidores , Piridinas/farmacologia , Fator de Transcrição STAT6/metabolismo , Linhagem Celular , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , PPAR gama/metabolismo , Fenótipo , Transdução de Sinais
16.
Biomol Ther (Seoul) ; 29(1): 64-72, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32843585

RESUMO

Renal cell carcinoma (RCC) is likely to metastasize to other organs, and is often resistant to conventional chemotherapies. Thymoquinone (TQ), a phytochemical derived from the seeds of Nigella sativa, has been shown to inhibit migration and metastasis in various cancers. In this study, we assessed the effect of TQ on the migratory activity of human RCC Caki-1 cells. We found that treatment with TQ reduced the proteolytic activity of matrix metalloproteinase-9 (MMP-9) in Caki-1 cells. TQ significantly repressed prostaglandin E2 (PGE2) production, its EP2 receptor expression as well as the activation of Akt and p38, the wellknown upstream signal proteins of MMP-9. In addition, treatment with butaprost, a PGE2 agonist, also induced MMP-9 activity and migration/invasion in Caki-1 cells. Moreover, pharmacological inhibitors of PI3K/Akt and p38 remarkably attenuated butaprostinduced Caki-1 cell migration and invasion, implying that activation of PI3K/Akt and p38 is a bridge between the PGE2-EP2 axis and MMP-9-dependent migration and invasion. Taken together, these data suggest that TQ is a promising anti-metastatic drug to treat advanced and metastatic RCC.

17.
Ann Hum Genet ; 85(2): 80-91, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33249558

RESUMO

Phosphodiesterase 3A (PDE3A) is an enzyme that plays an important role in the regulation of cyclic adenosine monophosphate (cAMP)-mediated intracellular signaling in cardiac myocytes and platelets. PDE3A hydrolyzes cAMP, which results in a decrease in intracellular cAMP levels and leads to platelet activation. Whole-exome sequencing of 50 DNA samples from a healthy Korean population revealed a total of 13 single nucleotide polymorphisms including five missense variants, D12N, Y497C, H504Q, C707R, and A980V. Recombinant proteins for the five variants of PDE3A (and wild-type protein) were expressed in a FreeStyle 293 expression system with site-directed mutagenesis. The expression of the recombinant PDE3A proteins was confirmed with Western blotting. Catalytic activity of the PDE3A missense variants and wild-type enzyme was measured with a PDE-based assay. Effects of the missense variants on the inhibition of PDE3A activity by cilostazol were also investigated. All variant proteins showed reduced activity (33-53%; p < .0001) compared to the wild-type protein. In addition, PDE3A activity was inhibited by cilostazol in a dose-dependent manner and was further suppressed in the missense variants. Specifically, the PDE3A Y497C showed significantly reduced activity, consistent with the predictions of in silico analyses. The present study provides evidence that individuals carrying the PDE3A Y497C variant may have lower enzyme activity for cAMP hydrolysis, which could cause interindividual variation in cAMP-mediated physiological functions.


Assuntos
Cilostazol/administração & dosagem , AMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Ativação Plaquetária/efeitos dos fármacos , Adulto , Plaquetas/efeitos dos fármacos , Cilostazol/efeitos adversos , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ativação Plaquetária/genética , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/efeitos adversos , Polimorfismo Genético/genética , Transdução de Sinais/efeitos dos fármacos , Sequenciamento do Exoma
18.
Ann Hum Genet ; 84(5): 400-411, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32396266

RESUMO

The objectives of the present study were to identify CYP4V2 genetic variants and characterize their functional consequences. A total of 26CYP4V2 genetic variants were identified, including seven novel variants in 60 randomly selected healthy subjects. Six protein-coding variants were studied, including three novel variants (L22V, R287T, and G410C) and three previously reported variants (R36S, Q259K, and H331P). The cDNA sequences encoding each amino acid variant and the wild-type CYP4V2 protein were cloned into the pcDNA/PDEST40 expression vector and transfected into eukaryotic 293T cells for overexpression of the CYP4V2 coding variants. CYP4V2 H331P and CYP4V2 G410C exhibited significant decreases in activity for lauric acid oxidation (20-30% of wild-type activity), when compared to the wildtype, which was correlated with low expression of CYP4V2 H331P and G410C substituted proteins. The other four CYP4V2 amino variants were comparable to wild-type CYP4V2 for lauric acid metabolism. The CYP4V2 H331P and G410C substitutions were predicted to cause a structural change through in silico analysis. In conclusion, the present study provides functional information about CYP4V2 genetic variants. These findings will be valuable for interpreting individual variations in phenotypes associated with CYP4V2 function in the clinical setting.


Assuntos
Povo Asiático/genética , Família 4 do Citocromo P450/genética , Ácidos Láuricos/metabolismo , Adulto , Sequência de Aminoácidos , Haplótipos , Humanos , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , República da Coreia , Adulto Jovem
19.
Artigo em Inglês | MEDLINE | ID: mdl-31999978

RESUMO

20-hydroxyeicosatetraenoic acid (20-HETE) is an arachidonic acid metabolite which is known to increase platelet aggregation and cardiovascular risk. In this study, nine non-steroidal anti-inflammatory drugs (NSAIDs) selected by chemical structures were screened to determine their effects on the glucuronidation of 20-HETE using human liver microsomes (HLMs). Then, the combined effects of the selected NSAID and genetic polymorphisms in UDP-glucuronosyltransferase (UGT) were investigated. Among the tested NSAIDs, diclofenac was the strongest inhibitor of 20-HETE glucuronidation with an IC50 value of 3.5 µM. Celecoxib, naproxen, mefenamic acid, ibuprofen, and indomethacin showed modest inhibition with IC50 values of 77, 91, 190, 208, and 220 µM, respectively, while acetylsalicylic acid, rofecoxib, and meloxicam did not inhibit 20-HETE glucuronidation. Glucuronidation of 20-HETE by UGT2B7 and UGT1A9 recombinant enzymes was significantly inhibited by indomethacin, mefanemic acid, diclofenac, ibuprofen, naproxen, and celecoxib (P < 0.001). In addition, diclofenac exhibited a competitive inhibition mechanism with the Km value of 20-HETE glucuronidation increasing from 23.5 µM to 62 µM in the presence of 3.5 µM diclofenac. Diclofenac further decreased 20-HETE glucuronidation in HLMs carrying UGT2B7*2 alleles compared with the wild-type HLMs. The results from this study would be useful in understanding the alteration of 20-HETE levels in relation to NSAID and UGT genetic polymorphisms.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Glucuronídeos/metabolismo , Ácidos Hidroxieicosatetraenoicos/química , Microssomos Hepáticos/química , Adulto , Anti-Inflamatórios não Esteroides/química , Feminino , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Pessoa de Meia-Idade , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , República da Coreia , Relação Estrutura-Atividade , UDP-Glucuronosiltransferase 1A
20.
Artigo em Inglês | MEDLINE | ID: mdl-31891857

RESUMO

A simple, sensitive, and rapid liquid chromatography (LC)-tandem mass spectrometry (MS/MS) method was developed for the simultaneous determination of arginine and its pathway-related metabolites (ornithine, proline, citrulline, glutamate, agmatine, spermidine, and spermine) in cellular extracts. Cells were lysed and cellular proteins precipitated by the addition of acetonitrile followed by ultra-sonication. Supernatants were analyzed using a Chromolith High Resolution RP-18 endcapped column (100 × 4.6 mm, 1.15 µm, 150 Å), with mobile phases of 0.1% formic acid solution and 0.1% formic acid in acetonitrile. Detection was carried out in multiple reaction monitoring (MRM) mode. Calibration curves showed linearity (r2 > 0.99) for all metabolites over the calibration ranges used. The intra- and inter-day precision was less than 13.5%, and the accuracy was between 91.3 and 114.7%. The method developed in this study was successfully applied to measure arginine and its pathway-related metabolites, which are related to nitric oxide synthase/arginase pathways in mouse bone marrow-derived dendritic cells (BMDCs). The ability to simultaneously measure arginine and its pathway-related metabolites is valuable for better understanding local and systemic inflammatory processes.


Assuntos
Aminoácidos/análise , Arginina/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Agmatina/análise , Agmatina/metabolismo , Aminoácidos/metabolismo , Animais , Arginina/metabolismo , Células da Medula Óssea/química , Células da Medula Óssea/metabolismo , Células Cultivadas , Células Dendríticas/química , Células Dendríticas/metabolismo , Limite de Detecção , Modelos Lineares , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Espermidina/análise , Espermidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...