Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 12457, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462655

RESUMO

Recently, bacterial endophytes (BEs) have gained importance in the agricultural sector for their use as biocontrol agents to manage plant pathogens. Outbreak of the pine wilt disease (PWD) in Korea has led researchers to test the feasibility of BEs in controlling the pine wood nematode (PWN) Bursaphelenchus xylophilus. In this study, we have reported the diversity and biocontrol activity of BEs against the PWN. By employing a culture-dependent approach, 1,622 BEs were isolated from the needle, stem, and root tissues of P. densiflora, P. rigida, P. thunbergii, and P. koraiensis across 18 sampling sites in Korea. We classified 389 members based on 16S rDNA analysis and taxonomic binning, of which, 215 operational taxonomic units (OTUs) were determined. Using Shannon's indices, diversity across the Pinus species and tissues was estimated to reveal the composition of BEs and their tissue-specific preferences. When their ethyl acetate crude extracts were analysed for biocontrol activity, 44 candidates with nematicidal activity were obtained. Among these, Stenotrophomonas and Bacillus sp. exhibited significant inhibitory activity against PWN during their developmental stages. Altogether, our study furnishes a basic comprehension of bacterial communities found in the Pinus species and highlights the potential of BEs as biocontrol agents to combat PWD.


Assuntos
Antinematódeos , Bacillus , Nematoides/crescimento & desenvolvimento , Controle Biológico de Vetores , Pinus , Stenotrophomonas , Animais , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Bacillus/classificação , Bacillus/genética , Bacillus/metabolismo , Pinus/microbiologia , Pinus/parasitologia , Stenotrophomonas/classificação , Stenotrophomonas/genética , Stenotrophomonas/isolamento & purificação , Stenotrophomonas/metabolismo
2.
Sci Rep ; 9(1): 12461, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462658

RESUMO

In this study, we isolated a total of 238 culturable putative bacterial endophytes from four Pinus species (Pinus densiflora, P. koraiensis, P. rigida, and P. thunbergii) across 18 sampling sites in Korea. The samples were cultured in de Man Rogosa Sharpe and humic acid-vitamin agar media. These selective media were used to isolate lactic acid bacteria and Actinobacteria, respectively. Analysis using 16S ribosomal DNA sequencing grouped the isolated putative bacterial endophytes into 107 operational taxonomic units (OTUs) belonging to 48 genera. Gamma-proteobacteria were the most abundant bacteria in each sampling site and three tissues (needle, stem and root). The highest OTU richness and diversity indices were observed in the roots, followed by stem and needle tissues. Total metabolites extracted from three isolates (two isolates of Escherichia coli and Serratia marcescens) showed significant nematicidal activity against the pine wood nematode (Bursaphelenchus xylophilus). Our findings demonstrated the potential use of bacterial endophytes from pine trees as alternative biocontrol agents against pine wood nematodes.


Assuntos
Antinematódeos/metabolismo , Bactérias , Biodiversidade , Endófitos , Nematoides/crescimento & desenvolvimento , Pinus , Doenças das Plantas/parasitologia , Animais , Bactérias/classificação , Bactérias/metabolismo , Endófitos/classificação , Endófitos/metabolismo , Pinus/microbiologia , Pinus/parasitologia , República da Coreia
3.
J Microbiol Biotechnol ; 29(7): 1117-1123, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31216609

RESUMO

Control of pine wilt disease, which is caused by pine wilt nematode, Bursaphelenchus xylophilus, is heavily dependent on the use of chemicals such as abamectin. Although such chemicals are highly effective, demands for alternatives that are derived preferentially from natural sources, are increasing out of environmental concerns. One of the challenges to discovery of alternative control agents is lack of fast and efficient screening method that can be used in high-throughput manner. Here we described the development of colorimetric assay for the rapid and accurate screening of candidate nematicidal compounds/biologics targeting B. xylophilus. Contrary to the conventional method, which relies on laborious visual inspection and counting of nematode population under microscope, our method utilizes a redox dye that changes its color in response to metabolic activity of nematode population in a given sample. In this work, we optimized parameters of our colorimetric assay including number of nematodes and amount of redox dye, and tested applicability of our assay for screening of chemicals and biologics. We demonstrated that our colorimetric assay can applied to rapid and accurate quantification of nematode viability/mortality in a nematode population treated with candidate chemicals/biologics. Application of our method would facilitate high-throughput endeavors aiming at finding environment-friendly control agents for deadly disease of pine trees.


Assuntos
Bioensaio/métodos , Nematoides/fisiologia , Pinus , Doenças das Plantas/parasitologia , Animais , Antinematódeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Colorimetria , Indicadores e Reagentes/metabolismo , Nematoides/metabolismo , Oxazinas/metabolismo , Oxirredução , Tylenchida/metabolismo , Tylenchida/fisiologia , Xantenos/metabolismo
4.
Sci Rep ; 8(1): 16368, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401938

RESUMO

Recently, the occurrence of "Cenangium-dieback" has been frequent and devastating. Cenangium-dieback is caused by an endophytic fungus Cenangium ferruginosum in stressed pine trees. Progression of the disease in terms of molecular interaction between host and pathogen is not well studied and there is a need to develop preventive strategies. Thus, we simulated disease conditions and studied the associated transcriptomics, metabolomics, and hormonal changes. Pinus koraiensis seedlings inoculated with C. ferruginosum were analyzed both under drought and well-watered conditions. Transcriptomic analysis suggested decreased expression of defense-related genes in C. ferruginosum-infected seedlings experiencing water-deficit. Further, metabolomic analysis indicated a decrease in the key antimicrobial terpenoids, flavonoids, and phenolic acids. Hormonal analysis revealed a drought-induced accumulation of abscisic acid and a corresponding decline in the defense-associated jasmonic acid levels. Pathogen-associated changes were also studied by treating C. ferruginosum with metabolic extracts from pine seedlings (with and without drought) and polyethylene glycol to simulate the effects of direct drought. From RNA sequencing and metabolomic analysis it was determined that drought did not directly induce pathogenicity of C. ferruginosum. Collectively, we propose that drought weakens pine immunity, which facilitates increased C. ferruginosum growth and results in conversion of the endophyte into the phytopathogen causing dieback.


Assuntos
Ascomicetos/fisiologia , Progressão da Doença , Secas , Pinus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Pinus/genética , Pinus/fisiologia , Plântula/microbiologia , Análise de Sequência de RNA , Estresse Fisiológico/genética , Terpenos/metabolismo
5.
Molecules ; 23(7)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30041426

RESUMO

Bursaphelenchus xylophilus is a destructive phytophagous nematode that mainly infects pine species and causes pine wilt disease (PWD). PWD is one of the most devastating diseases that has damaged the pine forests of eastern Asia and Portugal for the last four decades. B. xylophilus infects healthy pine trees through Monochamus beetles and its subsequent proliferation results in destruction of the infected pine trees. The poor water solubility and high cost of currently used trunk-injected chemicals such as avermectin and abamectin for the prevention of PWD are major concerns. Thus, for the identification of new compounds targeting the different targets, five proteins including cathepsin L-like cystein proteinase, peroxiredoxins, hsp90, venome allergen protein and tubulin that are known to be important for development and pathogenicity of B. xylophilus were selected. The compounds were virtually screened against five proposed targets through molecular docking into hypothetical binding sites located in a homology-built protein model. Of the fifteen nematicides screened, amocarzine, mebendazole and flubendazole were judged to bind best. For these best docked compounds, structural and electronic properties were calculated through density functional theory studies. The results emphasize that these compounds could be potential lead compounds that can be further developed into nematicidal chemical against B. xylophilus. However, further studies are required to ascertain the nematicidal activity of these compounds against phytophagous nematode.


Assuntos
Antinematódeos/química , Antinematódeos/farmacologia , Nematoides/efeitos dos fármacos , Pinus/parasitologia , Animais , Sítios de Ligação , Descoberta de Drogas , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade
6.
Molecules ; 22(9)2017 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-28846620

RESUMO

Light-emitting diodes (LEDs) are characterized by their narrow-spectrum, non-thermal photon emission, greater longevity, and energy-saving characteristics, which are better than traditional light sources. LEDs thus hold the potential to revolutionize horticulture lighting technology for crop production, protection, and preservation. Exposure to different LED wavelengths can induce the synthesis of bioactive compounds and antioxidants, which in turn can improve the nutritional quality of horticultural crops. Similarly, LEDs increase the nutrient contents, reduce microbial contamination, and alter the ripening of postharvest fruits and vegetables. LED-treated agronomic products can be beneficial for human health due to their good nutrient value and high antioxidant properties. Besides that, the non-thermal properties of LEDs make them easy to use in closed-canopy or within-canopy lighting systems. Such configurations minimize electricity consumption by maintaining optimal incident photon fluxes. Interestingly, red, blue, and green LEDs can induce systemic acquired resistance in various plant species against fungal pathogens. Hence, when seasonal clouds restrict sunlight, LEDs can provide a controllable, alternative source of selected single or mixed wavelength photon source in greenhouse conditions.


Assuntos
Antioxidantes/efeitos da radiação , Produção Agrícola/métodos , Fotossíntese/efeitos da radiação , Biomassa , Frutas , Luz
7.
Mycobiology ; 42(4): 331-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25606004

RESUMO

To examine the effects of water stress and Cenangium ferruginosum (CF) on the fungal endophytic community of needles of Pinus koraiensis (PK), fungal endophytes isolated from the needles of 5-year-old PK seedlings were compared before and after exposure to water stress conditions and artificial inoculation with CF ascospores. Artificial CF inoculation was successfully confirmed using PCR with CF-specific primers (CfF and CfR). For comparison of the degree of water deficit in water-stressed and control groups of PK seedlings infected with CF, the water saturation deficit and water potential were measured. Lower water potential estimates were found in the water-stressed seedlings than in the control group. The fungal endophytes isolated from the second-year needles of non-water-stressed seedlings before and after CF inoculation revealed that primary saprobes were approximately 30% and 71.7%, respectively, and the remaining endophytes were rot fungi or pathogens. Sixty days after CF inoculation, diverse fungal endophytes in the first-year needles were isolated from the water-stressed seedlings. However, some fungal endophytes isolated from the non-water-stressed seedlings were also identified. Fungal endophytes in the second-year needles of the water-stressed and non-water-stressed seedlings were approximately 8% and 71.7% of saprobes, respectively, and the remaining endophytes were rot fungi or pathogens. On the basis of the results, we conclude that water deficit and CF can have an effect on fungal endophytic communities in the needles of PK seedlings.

8.
Mycobiology ; 41(2): 86-93, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23874131

RESUMO

Sequence characterized amplified region (SCAR) markers are one of the most effective and accurate tools for microbial identification. In this study, we applied SCAR markers for the rapid and accurate detection of Phytophthora katsurae, the casual agent of chestnut ink disease in Korea. In this study, we developed seven SCAR markers specific to P. katsurae using random amplified polymorphic DNA (RAPD), and assessed the potential of the SCAR markers to serve as tools for identifying P. katsurae. Seven primer pairs (SOPC 1F/SOPC 1R, SOPC 1-1F/SOPC 1-1R, SOPC 3F/SOPC 3R, SOPC 4F/SOPC 4R, SOPC 4F/SOPC 4-1R, SOPD 9F/SOPD 9R, and SOPD 10F/SOPD 10R) from a sequence derived from RAPD fragments were designed for the analysis of the SCAR markers. To evaluate the specificity and sensitivity of the SCAR markers, the genomic DNA of P. katsurae was serially diluted 10-fold to final concentrations from 1 mg/mL to 1 pg/mL. The limit of detection using the SCAR markers ranged from 100 µg/mL to 100 ng/mL. To identify the limit for detecting P. katsurae zoospores, each suspension of zoospores was serially diluted 10-fold to final concentrations from 10 × 10(5) to 10 × 10(1) zoospores/mL, and then extracted. The limit of detection by SCAR markers was approximately 10 × 10(1) zoospores/mL. PCR detection with SCAR markers was specific for P. katsurae, and did not produce any P. katsurae-specific PCR amplicons from 16 other Phytophthora species used as controls. This study shows that SCAR markers are a useful tool for the rapid and effective detection of P. katsurae.

9.
Mycobiology ; 38(3): 225-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23956661

RESUMO

We studied the resistance of Cenococcum geophilum and Suillus granulatus isolates to NaCl during growth under axenic culture conditions. C. geophilum isolates displayed variations in NaCl resistance; mycelial growth of most isolates was inhibited above 200mM. All isolates of S. granulatus were tolerant to high NaCl content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...