Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Arthritis Rheum ; 60: 152185, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36870237

RESUMO

BACKGROUND: Alterations in gastrointestinal (GI) microbial composition have been reported in patients with systemic sclerosis (SSc). However, it is unclear to what degree these alterations and/or dietary changes contribute to the SSc-GI phenotype. OBJECTIVES: Our study aimed to 1) evaluate the relationship between GI microbial composition and SSc-GI symptoms, and 2) compare GI symptoms and GI microbial composition between SSc patients adhering to a low versus non-low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) diet. METHODS: Adult SSc patients were consecutively recruited to provide stool specimens for bacterial 16S rRNA gene sequencing. Patients completed the UCLA Scleroderma Clinical Trial Consortium Gastrointestinal Tract Instrument (GIT 2.0) and the Diet History Questionnaire (DHQ) II and were classified as adhering to a low or non-low FODMAP diet. GI microbial differences were assessed using three metrics of alpha diversity (species richness, evenness, and phylogenetic diversity), as well as beta diversity (overall microbial composition). Differential abundance analysis was performed to identify specific genera associated with SSc-GI phenotype and low versus non-low FODMAP diet. RESULTS: Of the 66 total SSc patients included, the majority were women (n = 56) with a mean disease duration of 9.6 years. Thirty-five participants completed the DHQ II. Increased severity of GI symptoms (total GIT 2.0 score) was associated with decreased species diversity and differences in GI microbial composition. Specifically, pathobiont genera (e.g., Klebsiella and Enterococcus) were significantly more abundant in patients with increased GI symptom severity. When comparing low (N = 19) versus non-low (N = 16) FODMAP groups, there were no significant differences in GI symptom severity or in alpha and beta diversity. Compared with the low FODMAP group, the non-low FODMAP group had greater abundance of the pathobiont Enterococcus. CONCLUSION: SSc patients reporting more severe GI symptoms exhibited GI microbial dysbiosis characterized by less species diversity and alterations in microbial composition. A low FODMAP diet was not associated with significant alterations in GI microbial composition or reduced SSc-GI symptoms; however, randomized controlled trials are needed to evaluate the impact of specific diets on GI symptoms in SSc.


Assuntos
Gastroenteropatias , Microbiota , Escleroderma Sistêmico , Humanos , Masculino , Feminino , RNA Ribossômico 16S , Filogenia , Dieta , Dissacarídeos , Oligossacarídeos , Monossacarídeos , Gastroenteropatias/etiologia , Escleroderma Sistêmico/complicações
2.
Artigo em Inglês | MEDLINE | ID: mdl-35206594

RESUMO

Growing evidence supports the concept that bidirectional brain-gut microbiome interactions play an important mechanistic role in aging, as well as in various neuropsychiatric conditions including depression. Gray matter volume (GMV) deficits in limbic regions are widely observed in geriatric depression (GD). We therefore aimed to explore correlations between gut microbial measures and GMV within these regions in GD. Sixteen older adults (>60 years) with GD (37.5% female; mean age, 70.6 (SD = 5.7) years) were included in the study and underwent high-resolution T1-weighted structural MRI scanning and stool sample collection. GMV was extracted from bilateral regions of interest (ROI: hippocampus, amygdala, nucleus accumbens) and a control region (pericalcarine). Fecal microbiota composition and diversity were assessed by 16S ribosomal RNA gene sequencing. There were significant positive associations between alpha diversity measures and GMV in both hippocampus and nucleus accumbens. Additionally, significant positive associations were present between hippocampal GMV and the abundance of genera Family_XIII_AD3011_group, unclassified Ruminococcaceae, and Oscillibacter, as well as between amygdala GMV and the genera Lachnospiraceae_NK4A136_group and Oscillibacter. Gut microbiome may reflect brain health in geriatric depression. Future studies with larger samples and the experimental manipulation of gut microbiome may clarify the relationship between microbiome measures and neuroplasticity.


Assuntos
Microbioma Gastrointestinal , Substância Cinzenta , Idoso , Encéfalo/diagnóstico por imagem , Depressão , Fezes , Feminino , Microbioma Gastrointestinal/genética , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...