Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Small ; 20(3): e2305045, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37675813

RESUMO

The potential for various future industrial applications has made broadband photodetectors beyond visible light an area of great interest. Although most 2D van-der-Waals (vdW) semiconductors have a relatively large energy bandgap (>1.2 eV), which limits their use in short-wave infrared detection, they have recently been considered as a replacement for ternary alloys in high-performance photodetectors due to their strong light-matter interaction. In this study, a ferroelectric gating ReS2 /WSe2 vdW heterojunction-channel photodetector is presented that successfully achieves broadband light detection (>1300 nm, expandable up to 2700 nm). The staggered type-II bandgap alignment creates an interlayer gap of 0.46 eV between the valence band maximum (VBMAX ) of WSe2 and the conduction band minimum (CBMIN ) of ReS2 . Especially, the control of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric dipole polarity for a specific wavelength allows a high photoresponsivity of up to 6.9 × 103 A W-1 and a low dark current below 0.26 nA under the laser illumination with a wavelength of 405 nm in P-up mode. The achieved high photoresponsivity, low dark current, and full-range near infrared (NIR) detection capability open the door for next-generation photodetectors beyond traditional ternary alloy photodetectors.

2.
NPJ Regen Med ; 8(1): 46, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626061

RESUMO

Red blood cell (RBC) generation from human pluripotent stem cells (PSCs) offers potential for innovative cell therapy in regenerative medicine as well as developmental studies. Ex vivo erythropoiesis from PSCs is currently limited by the low efficiency of functional RBCs with ß-globin expression in culture systems. During induction of ß-globin expression, the absence of a physiological microenvironment, such as a bone marrow niche, may impair cell maturation and lineage specification. Here, we describe a simple and reproducible culture system that can be used to generate erythroblasts with ß-globin expression. We prepared a two-dimensional defined culture with ferric citrate treatment based on definitive hemogenic endothelium (HE). Floating erythroblasts derived from HE cells were primarily CD45+CD71+CD235a+ cells, and their number increased remarkably upon Fe treatment. Upon maturation, the erythroblasts cultured in the presence of ferric citrate showed high transcriptional levels of ß-globin and enrichment of genes associated with heme synthesis and cell cycle regulation, indicating functionality. The rapid maturation of these erythroblasts into RBCs was observed when injected in vivo, suggesting the development of RBCs that were ready to grow. Hence, induction of ß-globin expression may be explained by the effects of ferric citrate that promote cell maturation by binding with soluble transferrin and entering the cells.Taken together, upon treatment with Fe, erythroblasts showed advanced maturity with a high transcription of ß-globin. These findings can help devise a stable protocol for the generation of clinically applicable RBCs.

3.
J Korean Med Sci ; 38(33): e258, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605497

RESUMO

BACKGROUND: This study aimed to identify the specific T cell co-stimulatory and co-inhibitory factors that play prognostic roles in patients with glioblastoma. Additionally, the unique histone H3 modification enzymes that regulate the expression levels of these specific co-stimulatory and co-inhibitory factors were investigated. METHODS: The medical records of 84 patients newly diagnosed with glioblastoma at our institution from January 2006 to December 2020 were retrospectively reviewed. Immunohistochemical (IHC) staining for T cell co-stimulatory factors (CD27, CD28, CD137, OX40, and ICOS), T cell co-inhibitory factors (CTLA4, PD1, PD-L1, TIM3, and CD200R), and histone H3 lysine modification enzymes (MLL4, RIZ, EZH1, NSD2, KDM5c, JMJD1a, UTX, and JMJD5) was performed on archived paraffin-embedded tissues obtained by biopsy or resection. Quantitative real time-polymerase chain reaction (qRT-PCR) was performed for specific factors, which demonstrated causal relationships, in order to validate the findings of the IHC examinations. RESULTS: The mean follow-up duration was 27.5 months (range, 4.1-43.5 months). During this period, 76 patients (90.5%) died, and the mean OS was 19.4 months (95% confidence interval, 16.3-20.9 months). Linear positive correlations were observed between the expression levels of CD28 and JMJD1a (R2 linear = 0.982) and those of CD137 and UTX (R2 linear = 1.528). Alternatively, significant negative correlations were observed between the expression levels of CTLA4 and RIZ (R2 linear = -1.746) and those of PD-L1 and EZH1 (R2 linear = -2.118); these relationships were confirmed by qRT-PCR. In the multivariate analysis, increased expression levels of CD28 (P = 0.042), and CD137 (P = 0.009), and decreased expression levels of CTLA4 (P = 0.003), PD-L1 (P = 0.020), and EZH1 (P = 0.040) were significantly associated with longer survival. CONCLUSION: These findings suggest that the expression of certain T cell co-stimulatory factors, such as CD28 and CD 137, and co-inhibitory factors, such as CTLA4 and PD-L1 are associated with prognosis of glioblastoma patients.


Assuntos
Glioblastoma , Histonas , Humanos , Antígeno CTLA-4/genética , Antígeno B7-H1 , Lisina , Prognóstico , Antígenos CD28 , Glioblastoma/diagnóstico , Glioblastoma/genética , Epigênese Genética , Estudos Retrospectivos , Linfócitos T
4.
J Vis Exp ; (191)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36715415

RESUMO

Recently, liquid biopsies have been used to diagnose various diseases, including cancer. Body fluids contain many substances, including cells, proteins, and nucleic acids originating from normal tissues, but some of these substances also originate from the diseased area. The investigation and analysis of these substances in the body fluids play a pivotal role in the diagnosis of various diseases. Therefore, it is important to accurately separate the required substances, and several techniques are developed to be used for this purpose. We have developed a lab-on-a-disc type of device and platform named CD-PRIME. This device is automated and has good results for sample contamination and sample stability. Moreover, it has advantages of a good acquisition yield, a short operation time, and high reproducibility. In addition, depending on the type of disc to be mounted, plasma containing cell-free DNA, circulating tumor cells, peripheral blood mononuclear cells, or buffy coats can be separated. Thus, the acquisition of a variety of materials present in the body fluids can be done for a variety of downstream applications, including the study of omics.


Assuntos
Líquidos Corporais , Neoplasias , Humanos , Leucócitos Mononucleares , Reprodutibilidade dos Testes , Biópsia Líquida
5.
Cell Prolif ; 56(2): e13366, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36478274

RESUMO

Hemogenic endothelium (HE) plays a pivotal and inevitable role in haematopoiesis and can generate all blood and endothelial lineage cells in the aorta-gonad-mesonephros of mouse embryos. Whether definitive HE can prospectively isolate pure HE from human pluripotent stem cells that can spontaneously differentiate into heterogeneous cells remains unknown. Here, we identified and validated a CD34dim subpopulation with hemogenic potential. We also purified CD34 cells with a CXCR4- CD73- phenotype as a definitive HE population that generated haematopoietic stem cells and lymphocytes. The frequency of CXCR4- CD73- CD34dim was evidently increased by bone morphogenetic protein 4, and purified HE cells differentiated into haematopoietic cells with myeloid and T lymphoid lineages including Vδ2+ subset of γ/δ T cells. We developed a simple method to purify HE cells that were enriched in CD34dim cells. We uncovered an initial step in differentiating haematopoietic lineage cells that could be applied to basic and translational investigations into regenerative medicine.


Assuntos
Hemangioblastos , Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Hemangioblastos/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Proteína Morfogenética Óssea 4/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Antígenos CD34/metabolismo , Diferenciação Celular , Hematopoese , Linhagem da Célula
6.
Mol Cell Probes ; 66: 101873, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36379302

RESUMO

Early detection is critical for minimizing mortality from cancer. Plasma cell-free DNA (cfDNA) contains the signatures of tumor DNA, allowing us to quantify the signature and diagnose early-stage tumors. Here, we report a novel tumor fragment quantification method, TOF (Tumor Originated Fragment) for the diagnosis of lung cancer by quantifying and analyzing both the plasma cfDNA methylation patterns and fragmentomic signatures. TOF utilizes the amount of ctDNA predicted from the methylation density information of each cfDNA read mapped on 6243 lung-tumor-specific CpG markers. The 6243 tumor-specific markers were derived from lung tumor tissues by comparing them with corresponding normal tissues and healthy blood from public methylation data. TOF also utilizes two cfDNA fragmentomic signatures: 1) the short fragment ratio, and 2) the 5' end-motif profile. We used 298 plasma samples to analyze cfDNA signatures using enzymatic methyl-sequencing data from 201 lung cancer patients and 97 healthy controls. The TOF score showed 0.98 of the area under the curve in correctly classifying lung cancer from normal samples. The TOF score resolution was high enough to clearly differentiate even the early-stage non-small cell lung cancer patients from the healthy controls. The same was true for small cell lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Epigenoma , Detecção Precoce de Câncer , DNA de Neoplasias/genética , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Metilação de DNA/genética
7.
Polymers (Basel) ; 14(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080577

RESUMO

Natural rubber (NR) presents a number of advantages over other types of rubber but has poor resistance to chemicals and aging. The incorporation of ethylene propylene diene monomer (EPDM) into the NR matrix may be able to address this issue. Mineral fillers, such as carbon black (CB) and silica are routinely incorporated into various elastomers owing to their low cost, enhanced processability, good functionality, and high resistance to chemicals and aging. Other fillers have been examined as potential alternatives to CB and silica. In this study, phlogopite was surface-modified using 10 phr of compatibilizers, such as aminopropyltriethoxysilane (A1S), aminoethylaminopropyltrimethoxysilane (A2S), or 3-glycidoxypropyltrimethoxysilane (ES), and mixed with NR/EPDM blends. The effects of untreated and surface-treated phlogopite on the mechanical properties of the rubber blend were then compared with those of common fillers (CB and silica) for rubbers. The incorporation of surface-modified phlogopite into NR/EPDM considerably enhanced various properties. The functionalization of the phlogopite surface using silane-based matters (amino- and epoxide-functionalized) led to excellent compatibility between the rubber matrix and phlogopite, thereby improving diverse properties of the elastomeric composites, with effects analogous to those of CB. The tensile strength and elongation at break of the phlogopite-embedded NR/EPDM composite were lower than those of the CB-incorporated NR/EPDM composite by 30% and 10%, respectively. Among the prepared samples, the ES-functionalized phlogopite showed the best compatibility with the rubber matrix, exhibiting a tensile strength and modulus of composites that were 35% and 18% higher, respectively, compared with those of the untreated phlogopite-incorporated NR/EPDM composite. The ES-functionalized phlogopite/NR/EPDM showed similar strength and higher modulus (by 18%) to the CB/NR/EPDM rubber composite, despite slightly lower elongation at break and toughness. The results of rebound resilience and compression set tests indicated that the elasticity of the surface-modified phlogopite/NR/EPDM rubber composite was higher than that of the silica- and CB-reinforced composites. These improvements could be attributed to enhancements in the physical and chemical interactions among the rubber matrix, stearic acid, and functionalized (compatibilized) phlogopite. Therefore, the functionalized phlogopite can be utilized in a wide range of applications for rubber compounding.

8.
Exp Mol Med ; 54(8): 1165-1178, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35974098

RESUMO

Since an impaired coronary blood supply following myocardial infarction (MI) negatively affects heart function, therapeutic neovascularization is considered one of the major therapeutic strategies for cell-based cardiac repair. Here, to more effectively achieve therapeutic neovascularization in ischemic hearts, we developed a dual stem cell approach for effective vascular regeneration by utilizing two distinct types of stem cells, CD31+-endothelial cells derived from human induced pluripotent stem cells (hiPSC-ECs) and engineered human mesenchymal stem cells that continuously secrete stromal derived factor-1α (SDF-eMSCs), to simultaneously promote natal vasculogenesis and angiogenesis, two core mechanisms of neovascularization. To induce more comprehensive vascular regeneration, we intramyocardially injected hiPSC-ECs to produce de novo vessels, possibly via vasculogenesis, and a 3D cardiac patch encapsulating SDF-eMSCs (SDF-eMSC-PA) to enhance angiogenesis through prolonged secretion of paracrine factors, including SDF-1α, was implanted into the epicardium of ischemic hearts. We verified that hiPSC-ECs directly contribute to de novo vessel formation in ischemic hearts, resulting in enhanced cardiac function. In addition, the concomitant implantation of SDF1α-eMSC-PAs substantially improved the survival, retention, and vasculogenic potential of hiPSC-ECs, ultimately achieving more comprehensive neovascularization in the MI hearts. Of note, the newly formed vessels through the dual stem cell approach were significantly larger and more functional than those formed by hiPSC-ECs alone. In conclusion, these results provide compelling evidence that our strategy for effective vascular regeneration can be an effective means to treat ischemic heart disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Animais , Diferenciação Celular , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Isquemia/metabolismo , Infarto do Miocárdio/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica
9.
ACS Nano ; 16(6): 8974-8982, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35621270

RESUMO

The topological Hall effect has been observed in magnetic materials of complex spin structures or bilayers of trivial magnets and strong spin-orbit-coupled systems. In view of current attention on dissipationless topological electronics, the occurrence of the topological Hall effect in new systems or by an unexpected mechanism is fascinating. Here, we report a robust topological Hall effect generated in bilayers of a ferromagnet and a noncoplanar antiferromagnet, from the interfacial Dzyaloshinskii-Moriya interaction due to the exchange coupling of magnetic layers. Molecular beam epitaxy has been utilized to fabricate heterostructures of a ferromagnetic metal Cr2Te3 and a noncoplanar antiferromagnet Cr2Se3. A significant topological Hall effect at low temperature implies the development of nontrivial spin chirality, and density functional theory calculations explain the correlation of the Dzyaloshinskii-Moriya interaction increase and inversion symmetry breaking at the interface. The presence of noncoplanar ordering in the antiferromagnet plays a pivotal role in producing the topological Hall effect. Our results suggest that the exchange coupling in ferromagnet/noncoplanar antiferromagnet bilayers could be an alternative mechanism toward topologically protected magnetic structures.

11.
Cancer Res Treat ; 54(3): 690-708, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34793663

RESUMO

PURPOSE: This study aimed to investigate the methylation status of major histone modification sites in primary central nervous system lymphoma (PCNSL) samples and examine their prognostic roles in patients with PCNSL. MATERIALS AND METHODS: Between 2007 and 2020, 87 patients were histopathologically diagnosed with PCNSL. We performed immunohistochemical staining of the formalin-fixed paraffin-embedded samples of PCNSL for major histone modification sites, such as H3K4, H3K9, H3K27, H3K14, and H3K36. After detection of meaningful methylation sites, we examined histone modification enzymes that induce methylation or demethylation at each site using immunohistochemical staining. The meaningful immunoreactivity was validated by western blotting using fresh tissue of PCNSL. RESULTS: More frequent recurrences were found in hypomethylation of H3K4me3 (p=0.004) and hypermethylation of H3K27me2 (p<0.001) and H3K27me3 (p=0.002). These factors were also statistically related to short PFS and overall survival in the univariate and multivariate analyses. Next, histone modification enzymes inducing the demethylation of H3K4 (lysine-specific demethylase-1/2 and Jumonji AT-rich interactive domain [JARID] 1A-D]) and methylation of H3K27 (enhancer of zeste homolog [EZH]-1/2) were immu- nohistochemically stained. Among them, the immunoreactivity of JARID1A inversely associated with the methylation status of H3K4me3 (R2=-1.431), and immunoreactivity of EZH2 was directly associated with the methylation status of H3K27me2 (R2=0.667) and H3K27me3 (R2=0.604). These results were validated by western blotting in fresh PCNSL samples. CONCLUSION: Our study suggests that hypomethylation of H3K4me3 and hypermethylation of H3K27me2 and H3K27me3 could be associated with poor outcomes in patients with PCNSL and that these relationships are modified by JARID1A and EZH2.


Assuntos
Histonas , Linfoma , Biomarcadores , Sistema Nervoso Central/metabolismo , Metilação de DNA , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Humanos , Linfoma/diagnóstico , Linfoma/genética , Lisina/metabolismo , Prognóstico
12.
Nanoscale ; 13(45): 19264-19273, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34787629

RESUMO

Interlayer vibrations with discrete quantized modes in two-dimensional (2D) materials can be excited by ultrafast light due to the inherent low dimensionality and van der Waals force as a restoring force. Controlling such interlayer vibrations in layered materials, which are closely related to fundamental nanomechanical interactions and thermal transport, in spatial- and time-domain provides an in-depth understanding of condensed matters and potential applications for advanced phononic and photonics devices. The manipulation of interlayer vibrational modes has been implemented in a spatial domain through material design to develop novel optoelectronic and phononic devices with various 2D materials, but such control in a time domain is still lacking. We present an all-optical method for controlling the interlayer vibrations in a highly precise manner with Bi2Se3 as a promising optoelectronic and thermoelasticity material in layered structures using a coherently controlled pump and probe scheme. The observed thickness-dependent fast interlayer breathing modes and substrate-induced slow interfacial modes can be exactly explained by a modified linear chain model including coupling effect with substrate. In addition, the results of coherent control experiments also agree with the simulation results based on the interference of interlayer vibrations. This investigation is universally applicable for diverse 2D materials and provides insight into the interlayer vibration-related dynamics and novel device implementation based on an ultrafast timescale interlayer-spacing modulation scheme.

13.
Polymers (Basel) ; 13(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34301075

RESUMO

Rubber compounding with two or more components has been extensively employed to improve various properties. In particular, natural rubber (NR)/ethylene-propylene-diene monomer rubber (EPDM) blends have found use in tire and automotive parts. Diverse fillers have been applied to NR/EPDM blends to enhance their mechanical properties. In this study, a new class of mineral filler, phlogopite, was incorporated into an NR/EPDM blend to examine the mechanical, curing, elastic, and morphological properties of the resulting material. The combination of aminoethylaminopropyltrimethoxysilane (AEAPS) and stearic acid (SA) compatibilized the NR/EPDM/phlogopite composite, further improving various properties. The enhanced properties were compared with those of NR/EPDM/fillers composed of silica or carbon black (CB). Compared with the NR/EPDM/silica composite, the incompatibilized NR/EPDM/phlogopite composite without AEAPS exhibited poorer properties, but NR/EPDM/phlogopite compatibilized by AEAPS and SA showed improved properties. Most properties of the compatibilized NR/EPDM/phlogopite composite were similar to those of the NR/EPDM/CB composite, except for the lower abrasion resistance. The NR/EPDM/phlogopite/AEAPS rubber composite may potentially be used in various applications by replacing expensive fillers, such as CB.

14.
Front Vet Sci ; 8: 652224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898546

RESUMO

This study aimed to identify the expression profile of circulating microRNAs in dogs with eccentric or concentric cardiac hypertrophy. A total of 291 microRNAs in serum samples of five dogs with myxomatous mitral valve degeneration (MMVD) and five dogs with pulmonic stenosis (PS) were compared with those of five healthy dogs using microarray analysis. Results of microarray analysis revealed up-regulation of cfa-miR-130b [fold change (FC) = 2.13, p = 0.014), down-regulation of cfa-miR-375 (FC = 1.51, p = 0.014), cfa-miR-425 (FC = 2.56, p = 0.045), cfa-miR-30d (FC = 3.02, p = 0.047), cfa-miR-151 (FC = 1.89, p = 0.023), cfa-miR-19b (FC = 3.01, p = 0.008), and cfa-let-7g (FC = 2.53, p = 0.015) in MMVD group which showed eccentric cardiac hypertrophy, up-regulation of cfa-miR-346 (FC = 2.74, p = 0.032), down-regulation of cfa-miR-505 (FC = 1.56, p = 0.016) in PS group which showed concentric cardiac hypertrophy, and down-regulation of cfa-miR-30c (FC = 3.45, p = 0.013 in MMVD group; FC = 3.31, p = 0.014 in PS group) and cfa-let-7b (FC = 11.42, p = 0.049 in MMVD group; FC = 5.88, p = 0.01 in PS group) in both MMVD and PS groups. In addition, the unsupervised hierarchical clustering of differentially expressed microRNAs in each group resulted in complete separation of healthy dogs from dogs with heart diseases. Therefore, eleven microRNAs among 291 microRNAs were identified as differentially expressed circulating microRNAs related to MMVD or PS in dogs. This pilot study demonstrates that the microRNAs identified in this study could be possible candidates for novel biomarker or therapeutic target related to cardiac hypertrophy in dogs.

15.
Nanoscale Res Lett ; 16(1): 7, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33409649

RESUMO

Topologically protected chiral skyrmions are an intriguing spin texture that has attracted much attention because of fundamental research and future spintronic applications. MnSi with a non-centrosymmetric structure is a well-known material hosting a skyrmion phase. To date, the preparation of MnSi crystals has been investigated by using special instruments with an ultrahigh vacuum chamber. Here, we introduce a facile way to grow MnSi films on a sapphire substrate using a relatively low vacuum environment of conventional magnetron sputtering. Although the as-grown MnSi films have a polycrystalline nature, a stable skyrmion phase in a broad range of temperatures and magnetic fields is observed via magnetotransport properties including phenomenological scaling analysis of the Hall resistivity contribution. Our findings provide not only a general way to prepare the materials possessing skyrmion phases but also insight into further research to stimulate more degrees of freedom in our inquisitiveness.

16.
Nanoscale Horiz ; 6(2): 139-147, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33367448

RESUMO

Recently, various efforts have been made to implement synaptic characteristics with a ferroelectric field-effect transistor (FeFET), but in-depth physical analyses have not been reported thus far. Here, we investigated the effects by (i) the formation temperature of the ferroelectric material, poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) and (ii) the nature of the contact metals (Ti, Cr, Pd) of the FeFET on the operating performance of a FeFET-based artificial synapse in terms of various synaptic performance indices. Excellent ferroelectric properties were induced by maximizing the size and coverage ratio of the ß-phase domains by annealing the P(VDF-TrFE) film at 140 °C. A metal that forms a relatively high barrier improved the dynamic range and nonlinearity by suppressing the contribution of the tunneling current to the post-synaptic current. Subsequently, we studied the influence of the synaptic characteristics on the training and recognition tasks by using two MNIST datasets (fashion and handwritten digits) and the multi-layer perceptron concept of neural networks.

17.
Cancers (Basel) ; 12(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291558

RESUMO

PURPOSE: The objective of this study was to investigate the epigenetic role of histone lysine methylation/demethylation on the expression of epithelial-to-mesenchymal transition (EMT) associated transcriptional factors (TFs) during the metastasis of lung adenocarcinoma to the brain. METHODS: Paired samples of lung adenocarcinoma and brain metastasis (BM) were analyzed in 46 individual patients. Both samples were obtained by surgical resection or biopsy of the lung and brain. The paraffin-fixed formalin-embedded samples were obtained from the pathology archives in our institute. In samples of lung adenocarcinoma and BM, immunohistochemical staining was performed for epithelial markers, mesenchymal markers, EMT-TFs, histone lysine methyltransferase and demethylase. RESULTS: The immunoreactivity of EMT-TFs such as Slug (15.6% vs. 42.6%, p = 0.005), Twist (23.6% vs. 45.9%, p = 0.010) and ZEB1 (15.0% vs. 55.9%, p = 0.002) was increased in BM compared with that in lung adenocarcinoma. Epigenetic inducers such as H3K4 methyltransferase (MLL4, p = 0.018) and H3K36me3 demethylase (UTX, p = 0.003) were statistically increased, and epigenetic repressors such as EZH2 (H3K27 methyltransferase, p = 0.046) were significantly decreased in BM compared with those in lung adenocarcinoma. The expression of UTX-ZEB1 (R2 linear = 1.204) and MLL4-Slug (R2 linear = 0.987) was increased in direct proportion, and EZH2-Twist (R2 linear = -2.723) decreased in reverse proportion. CONCLUSIONS: The results suggest that certain histone lysine methyltransferase/demethylase, such as MLL4, UTX, and EZH2, regulate the expression of EMT-TFs such as Slug, ZEB1, and Twist epigenetically, which may thereby influence cancer metastasis from the lung to the brain.

18.
BMC Cancer ; 20(1): 694, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32718341

RESUMO

BACKGROUND: Early diagnosis and continuous monitoring are necessary for an efficient management of cervical cancers (CC). Liquid biopsy, such as detecting circulating tumor DNA (ctDNA) from blood, is a simple, non-invasive method for testing and monitoring cancer markers. However, tumor-specific alterations in ctDNA have not been extensively investigated or compared to other circulating biomarkers in the diagnosis and monitoring of the CC. Therfore, Next-generation sequencing (NGS) analysis with blood samples can be a new approach for highly accurate diagnosis and monitoring of the CC. METHOD: Using a bioinformatics approach, we designed a panel of 24 genes associated with CC to detect and characterize patterns of somatic single-nucleotide variations, indels, and copy number variations. Our NGS CC panel covers most of the genes in The Cancer Genome Atlas (TCGA) as well as additional cancer driver and tumor suppressor genes. We profiled the variants in ctDNA from 24 CC patients who were being treated with systemic chemotherapy and local radiotherapy at the Jeonbuk National University Hospital, Korea. RESULT: Eighteen out of 24 genes in our NGS CC panel had mutations across the 24 CC patients, including somatic alterations of mutated genes (ZFHX3-83%, KMT2C-79%, KMT2D-79%, NSD1-67%, ATM-38% and RNF213-27%). We demonstrated that the RNF213 mutation could be used potentially used as a monitoring marker for response to chemo- and radiotherapy. CONCLUSION: We developed our NGS CC panel and demostrated that our NGS panel can be useful for the diagnosis and monitoring of the CC, since the panel detected the common somatic variations in CC patients and we observed how these genetic variations change according to the treatment pattern of the patient.


Assuntos
DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Neoplasias do Colo do Útero/genética , Adenocarcinoma/sangue , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Adenosina Trifosfatases/genética , Idoso , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , DNA Tumoral Circulante/sangue , Classe I de Fosfatidilinositol 3-Quinases/genética , Proteínas de Ligação a DNA/genética , Feminino , Marcadores Genéticos , Proteínas de Homeodomínio/genética , Humanos , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Estudos Prospectivos , Proteínas Proto-Oncogênicas p21(ras)/genética , Sensibilidade e Especificidade , Ubiquitina-Proteína Ligases/genética , Neoplasias do Colo do Útero/sangue , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/terapia
19.
Sci Adv ; 6(13): eaay6994, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32284967

RESUMO

The clinical use of human bone marrow-derived mesenchymal stem cells (BM-MSCs) has been hampered by their poor performance after transplantation into failing hearts. Here, to improve the therapeutic potential of BM-MSCs, we developed a strategy termed in vivo priming in which BM-MSCs are primed in vivo in myocardial infarction (MI)-induced hearts through genetically engineered hepatocyte growth factor-expressing MSCs (HGF-eMSCs) that are encapsulated within an epicardially implanted 3D cardiac patch. Primed BM-MSCs through HGF-eMSCs exhibited improved vasculogenic potential and cell viability, which ultimately enhanced vascular regeneration and restored cardiac function to the MI hearts. Histological analyses further demonstrated that the primed BM-MSCs survived longer within a cardiac patch and conferred cardioprotection evidenced by substantially higher numbers of viable cardiomyocytes in the MI hearts. These results provide compelling evidence that this in vivo priming strategy can be an effective means to enhance the cardiac repair of MI hearts.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Cardiopatias/terapia , Fator de Crescimento de Hepatócito/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Técnicas de Cultura de Células , Terapia Baseada em Transplante de Células e Tecidos/métodos , Modelos Animais de Doenças , Expressão Gênica , Engenharia Genética , Cardiopatias/etiologia , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Suínos
20.
RSC Adv ; 10(22): 13016-13020, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35492100

RESUMO

In this work, we demonstrate a highly enhanced electrocatalytic activity of vanadium-doped CoP (V-CoP), directly grafted on a vertical graphene/carbon cloth electrode (VG/CC) by a facile electrochemical deposition method. Impressively, V-CoP/VG/CC exhibited a superior catalytic activity toward the hydrogen evolution reaction (HER) in alkaline solution. Compared to CoP/VG/CC, V-doping decreased the overpotential for HER at 10 mA cm-2 by more than half to 40 mV. The new catalyst even outperformed Pt/C beyond 150 mA cm-2. The overpotential for OER at 50 mA cm-2 was merely 314 mV, more than 100 mV lower than that of IrO2. Moreover, our novel catalyst worked as an excellent bifunctional catalyst with a low cell voltage of 1.69 V to achieve a current density of 50 mA cm-2. Detailed characterizations revealed that the V-doping in CoP resulted in improved electrical conductivity and increased active sites. Our findings highlight the significant advantage of V doping on the catalytic activities of CoP, already boosted by VG. Furthermore, concurrent doping with the electrodeposition of catalyst offers a new approach for practical water electrolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...