Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Adv Mater ; : e2406850, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011946

RESUMO

True random number generators (TRNGs), which create cryptographically secure random bitstreams, hold great promise in addressing security concerns regarding hardware, communication, and authentication in the Internet of Things (IoT) realm. Recently, TRNGs based on nanoscale materials have gained considerable attention for avoiding conventional and predictable hardware circuitry designs that can be vulnerable to machine learning (ML) attacks. In this article, a low-power and low-cost TRNG developed by exploiting stochastic ferroelectric polarization switching in 2D ferroelectric CuInP2S6 (CIPS)-based capacitive structures, is reported. The stochasticity arises from the probabilistic switching of independent electrical dipoles. The TRNG exhibits enhanced stochastic variability with near-ideal entropy, uniformity, uniqueness, Hamming distance, and independence from autocorrelation variations. Its unclonability is systematically examined using device-to-device variations. The generated cryptographic bitstreams pass the National Institute of Standards and Technology (NIST) randomness tests. This nanoscale CIPS-based TRNG is circuit-integrable and exhibits potential for hardware security in edge devices with advanced data encryption.

2.
Alzheimers Res Ther ; 16(1): 125, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863019

RESUMO

BACKGROUND: Risk factors for cardiovascular disease, including elevated blood pressure, are known to increase risk of Alzheimer's disease. There has been increasing awareness of the relationship between long-term blood pressure (BP) patterns and their effects on the brain. We aimed to investigate the association of repeated BP measurements with Alzheimer's and vascular disease markers. METHODS: We recruited 1,952 participants without dementia between August 2015 and February 2022. During serial clinic visits, we assessed both systolic BP (SBP) and diastolic BP (DBP), and visit-to-visit BP variability (BPV) was quantified from repeated measurements. In order to investigate the relationship of mean SBP (or DBP) with Alzheimer's and vascular markers and cognition, we performed multiple linear and logistic regression analyses after controlling for potential confounders (Model 1). Next, we investigated the relationship of with variation of SBP (or DBP) with the aforementioned variables by adding it into Model 1 (Model 2). In addition, mediation analyses were conducted to determine mediation effects of Alzheimer's and vascular makers on the relationship between BP parameters and cognitive impairment. RESULTS: High Aß uptake was associated with greater mean SBP (ß = 1.049, 95% confidence interval 1.016-1.083). High vascular burden was positively associated with mean SBP (odds ratio = 1.293, 95% CI 1.015-1.647) and mean DBP (1.390, 1.098-1.757). High tau uptake was related to greater systolic BPV (0.094, 0.001-0.187) and diastolic BPV (0.096, 0.007-0.184). High Aß uptake partially mediated the relationship between mean SBP and the Mini-Mental State Examination (MMSE) scores. Hippocampal atrophy mediated the relationship between diastolic BPV and MMSE scores. CONCLUSIONS: Each BP parameter affects Alzheimer's and vascular disease markers differently, which in turn leads to cognitive impairment. Therefore, it is necessary to appropriately control specific BP parameters to prevent the development of dementia. Furthermore, a better understanding of pathways from specific BP parameters to cognitive impairments might enable us to select the managements targeting the specific BP parameters to prevent dementia effectively.


Assuntos
Doença de Alzheimer , Pressão Sanguínea , Humanos , Feminino , Masculino , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/epidemiologia , Pressão Sanguínea/fisiologia , Idoso , Pessoa de Meia-Idade , Povo Asiático , Biomarcadores/sangue , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/etiologia , Fatores de Risco , Hipertensão/fisiopatologia , Hipertensão/epidemiologia
3.
Adv Mater ; : e2402361, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762775

RESUMO

The field of biomimetic electronics that mimic synaptic functions has expanded significantly to overcome the limitations of the von Neumann bottleneck. However, the scaling down of the technology has led to an increasingly intricate manufacturing process. To address the issue, this work presents a one-shot integrable electropolymerization (OSIEP) method with remote controllability for the deposition of synaptic elements on a chip by exploiting bipolar electrochemistry. Condensing synthesis, deposition, and patterning into a single fabrication step is achieved by combining alternating-current voltage superimposed on direct-current voltage-bipolar electropolymerization and a specially designed dual source/drain bipolar electrodes. As a result, uniform 6 × 5 arrays of poly(3,4-ethylenedioxythiophene) channels are successfully fabricated on flexible ultrathin parylene substrates in one-shot process. The channels exhibited highly uniform characteristics and are directly used as electrochemical synaptic transistor with synaptic plasticity over 100 s. The synaptic transistors have demonstrated promising performance in an artificial neural network (NN) simulation, achieving a high recognition accuracy of 95.20%. Additionally, the array of synaptic transistor is easily reconfigured to a multi-gate synaptic circuit to implement the principles of operant conditioning. These results provide a compelling fabrication strategy for realizing cost-effective and disposable NN systems with high integration density.

4.
Adv Mater ; 36(26): e2312747, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531112

RESUMO

Herein, a high-quality gate stack (native HfO2 formed on 2D HfSe2) fabricated via plasma oxidation is reported, realizing an atomically sharp interface with a suppressed interface trap density (Dit ≈ 5 × 1010 cm-2 eV-1). The chemically converted HfO2 exhibits dielectric constant, κ ≈ 23, resulting in low gate leakage current (≈10-3 A cm-2) at equivalent oxide thickness ≈0.5 nm. Density functional calculations indicate that the atomistic mechanism for achieving a high-quality interface is the possibility of O atoms replacing the Se atoms of the interfacial HfSe2 layer without a substitution energy barrier, allowing layer-by-layer oxidation to proceed. The field-effect-transistor-fabricated HfO2/HfSe2 gate stack demonstrates an almost ideal subthreshold slope (SS) of ≈61 mV dec-1 (over four orders of IDS) at room temperature (300 K), along with a high Ion/Ioff ratio of ≈108 and a small hysteresis of ≈10 mV. Furthermore, by utilizing a device architecture with separately controlled HfO2/HfSe2 gate stack and channel structures, an impact ionization field-effect transistor is fabricated that exhibits n-type steep-switching characteristics with a SS value of 3.43 mV dec-1 at room temperature, overcoming the Boltzmann limit. These results provide a significant step toward the realization of post-Si semiconducting devices for future energy-efficient data-centric computing electronics.

5.
Radiol Artif Intell ; 6(3): e230094, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38446041

RESUMO

Purpose To develop an artificial intelligence (AI) system for humeral tumor detection on chest radiographs (CRs) and evaluate the impact on reader performance. Materials and Methods In this retrospective study, 14 709 CRs (January 2000 to December 2021) were collected from 13 468 patients, including CT-proven normal (n = 13 116) and humeral tumor (n = 1593) cases. The data were divided into training and test groups. A novel training method called false-positive activation area reduction (FPAR) was introduced to enhance the diagnostic performance by focusing on the humeral region. The AI program and 10 radiologists were assessed using holdout test set 1, wherein the radiologists were tested twice (with and without AI test results). The performance of the AI system was evaluated using holdout test set 2, comprising 10 497 normal images. Receiver operating characteristic analyses were conducted for evaluating model performance. Results FPAR application in the AI program improved its performance compared with a conventional model based on the area under the receiver operating characteristic curve (0.87 vs 0.82, P = .04). The proposed AI system also demonstrated improved tumor localization accuracy (80% vs 57%, P < .001). In holdout test set 2, the proposed AI system exhibited a false-positive rate of 2%. AI assistance improved the radiologists' sensitivity, specificity, and accuracy by 8.9%, 1.2%, and 3.5%, respectively (P < .05 for all). Conclusion The proposed AI tool incorporating FPAR improved humeral tumor detection on CRs and reduced false-positive results in tumor visualization. It may serve as a supportive diagnostic tool to alert radiologists about humeral abnormalities. Keywords: Artificial Intelligence, Conventional Radiography, Humerus, Machine Learning, Shoulder, Tumor Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Estudos Retrospectivos , Úmero/diagnóstico por imagem , Radiografia , Compostos Radiofarmacêuticos
6.
Neurology ; 102(1): e207806, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165363

RESUMO

BACKGROUND AND OBJECTIVE: We aimed to investigate the association between glycemic variability (GV) and neuroimaging markers of white matter hyperintensities (WMH), beta-amyloid (Aß), brain atrophy, and cognitive impairment. METHODS: This was a retrospective cohort study that included participants without dementia from a memory clinic. They all had Aß PET, brain MRI, and standardized neuropsychological tests and had fasting glucose (FG) levels tested more than twice during the study period. We defined GV as the intraindividual visit-to-visit variability in FG levels. Multivariable linear regression and logistic regression were used to identify whether GV was associated with the presence of severe WMH and Aß uptake with DM, mean FG levels, age, sex, hypertension, and presence of APOE4 allele as covariates. Mediation analyses were used to investigate the mediating effect of WMH and Aß uptake on the relationship between GV and brain atrophy and cognition. RESULTS: Among the 688 participants, the mean age was 72.2 years, and the proportion of female participants was 51.9%. Increase in GV was predictive of the presence of severe WMH (coefficient [95% CI] 1.032 [1.012-1.054]; p = 0.002) and increased Aß uptake (1.005 [1.001-1.008]; p = 0.007). Both WMH and increased Aß uptake partially mediated the relationship between GV and frontal-executive dysfunction (GV → WMH → frontal-executive; direct effect, -0.319 [-0.557 to -0.080]; indirect effect, -0.050 [-0.091 to -0.008]) and memory dysfunction (GV → Aß â†’ memory; direct effect, -0.182 [-0.338 to -0.026]; indirect effect, -0.067 [-0.119 to -0.015]), respectively. In addition, increased Aß uptake completely mediated the relationship between GV and hippocampal volume (indirect effect, -1.091 [-2.078 to -0.103]) and partially mediated the relationship between GV and parietal thickness (direct effect, -0.00101 [-0.00185 to -0.00016]; indirect effect, -0.00016 [-0.00032 to -0.000002]). DISCUSSION: Our findings suggest that increased GV is related to vascular and Alzheimer risk factors and neurodegenerative markers, which in turn leads to subsequent cognitive impairment. Furthermore, GV can be considered a potentially modifiable risk factor for dementia prevention.


Assuntos
Doenças do Sistema Nervoso Central , Disfunção Cognitiva , Demência , Leucoaraiose , Doenças Neurodegenerativas , Feminino , Humanos , Idoso , Estudos Retrospectivos , Disfunção Cognitiva/diagnóstico por imagem , Neuroimagem , Peptídeos beta-Amiloides , Hipocampo , Atrofia
7.
PLoS One ; 18(11): e0294145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37948420

RESUMO

BACKGROUND: Age at diagnosis (AAD) and telomerase reverse transcriptase (TERT) promoter mutations are prognostic factors in differentiated thyroid carcinoma (DTC), and the prevalence of the mutations increases with AAD. Considering this correlation, we investigated whether an interaction between AAD and the mutations is present and whether the mutation mediates the effect of AAD on the mortality rate in DTC. METHODS: The study included 393 patients with DTC who were followed-up after thyroidectomy at a single medical center in Korea from 1994 to 2004. Multivariable Cox regression was used to investigate the interaction of AAD and TERT promoter mutation. Mediation analysis was conducted using a regression-based causal mediation model. RESULTS: The age-associated mortality rate increased progressively in all DTC patients and wild-type TERT group (WT-TERT) with a linear trend (p < 0.001) contrary to mutant TERT group (M-TERT) (p = 0.301). Kaplan-Meier curves declined progressively with increasing AAD in the entire group, but the change was without significance in M-TERT. The effect of AAD on mortality was not significant (adjusted HR: 1.07, 95% CI 0.38-3.05) in M-TERT. An interaction between AAD and TERT promoter mutation (p = 0.005) was found in a multivariable Cox regression. TERT promoter mutations mediated the effect of AAD on the mortality rate by 36% in DTC in a mediation analysis. CONCLUSIONS: Considering the mediation of TERT promoter mutation on the effect of AAD on mortality, inclusion of TERT promoter mutation in a stage classification to achieve further individualized prediction in DTC is necessary.


Assuntos
Adenocarcinoma , Telomerase , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/patologia , Prognóstico , Adenocarcinoma/genética , Mutação , Regiões Promotoras Genéticas , Telomerase/genética , Proteínas Proto-Oncogênicas B-raf/genética
8.
ACS Nano ; 17(21): 21297-21306, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37882177

RESUMO

Rapid developments in artificial neural network techniques and retina-inspired artificial visual systems are required to realize the sensing, processing, and memorization of an optical signal in a single device. Herein, a ferroelectric field-effect transistor fabricated with CuInP2S6 and α-In2Se3 van der Waals heterostructures is proposed and demonstrated for the development of an artificial visual system. The dipole polarizations are coupled and bidirectionally locked inside the ferroelectric α-In2Se3 along the in-plane and out-of-plane directions and are controlled by the gate voltages. Furthermore, light-induced polarization can change the order of polarization of the dipoles inside α-In2Se3. We demonstrate that using the combined control of these electrical and optical signals, the device may function like a retina-inspired vision system. The device can operate across a wide wavelength range (405-850 nm) and detect very low incident light (0.03 mW/cm2). Color recognition, high paired-pulse facilitation (∼170%), and short- to long-term memory transitions through quick learning are observed using this device. Additionally, this device demonstrates different complex processing abilities, including pattern recognition, light adaptation, optical logic operation, and event learning. The proposed ferroelectric heterostructure-based artificial visual system can serve as an essential bridge for fulfilling the future requirements of all-in-one sensing and memory-processing devices.

9.
Nano Converg ; 10(1): 13, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932269

RESUMO

Carrier multiplication via impact ionization in two-dimensional (2D) layered materials is a very promising process for manufacturing high-performance devices because the multiplication has been reported to overcome thermodynamic conversion limits. Given that 2D layered materials exhibit highly anisotropic transport properties, understanding the directionally-dependent multiplication process is necessary for device applications. In this study, the anisotropy of carrier multiplication in the 2D layered material, WSe2, is investigated. To study the multiplication anisotropy of WSe2, both lateral and vertical WSe2 field effect transistors (FETs) are fabricated and their electrical and transport properties are investigated. We find that the multiplication anisotropy is much bigger than the transport anisotropy, i.e., the critical electric field (ECR) for impact ionization of vertical WSe2 FETs is approximately ten times higher than that of lateral FETs. To understand the experimental results we calculate the average energy of the carriers in the proposed devices under strong electric fields by using the Monte Carlo simulation method. The calculated average energy is strongly dependent on the transport directions and we find that the critical electric field for impact ionization in vertical devices is approximately one order of magnitude larger than that of the lateral devices, consistent with experimental results. Our findings provide new strategies for the future development of low-power electric and photoelectric devices.

10.
Nanoscale ; 15(12): 5771-5777, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36857633

RESUMO

A steep switching device with a low subthreshold swing (SS) that overcomes the fundamental Boltzmann limit (kT/q) is required to efficiently process a continuously increasing amount of data. Recently, two-dimensional material-based impact ionization transistors with various structures have been reported with the advantages of a low critical electric field and a unique quantum confinement effect. However, most of them cannot retain steep switching at room temperature, and device performance degradation issues caused by impact ionization-induced hot carriers have not been structurally addressed. In this study, we presented an impact-ionization-based threshold switching field-effect transistor (I2S-FET) fabricated with a serial connection of a MoS2 FET and WSe2 impact ionization-based threshold switch (I2S). We obtained repetitive operation with low SS (32.8 mV dec-1) at room temperature, along with low dielectric injection efficiency (10-6), through a structural design with separation of the conducting region, which determines on-state carrier transport, and the steep-switching region where the transition from off- to on-state occurs via impact ionization. Furthermore, compared to previously reported threshold-switching devices, our device demonstrated hysteresis-free switching characteristics. This study provides a promising approach for developing next-generation energy-efficient electronic devices and ultralow-power applications.

11.
J Allergy Clin Immunol ; 151(5): 1307-1316, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828081

RESUMO

BACKGROUND: Atopic dermatitis (AD) commonly occurs in children and can progress into severe phenotypes or atopic march, causing significant impairment in quality of life. It is important to find early biomarkers of future onset of AD before any clinical manifestations. OBJECTIVE: We sought to find early predictors of future onset of AD in skin stratum corneum (SC). METHODS: Skin tape strips were collected from the forearm of newborns (n = 111) with and without family history of atopic diseases at the age of 2 months before any signs of clinical AD. Children were clinically monitored until they reached age 2 years to ensure the presence or absence of AD. Skin tape strips were subjected to lipidomic analyses by the liquid chromatography electrospray ionization tandem mass spectrometry and cytokine determination by Meso Scale Discovery U-Plex assay. RESULTS: Overall, 22 of 74 (29.7%) and 5 of 37 (13.5%) infants developed AD in the risk group and the control group, respectively. In the SC of future AD children, protein-bound ceramides were decreased (P < .001), whereas unsaturated sphingomyelin species (P < .0001) and "short-chain" nonhydroxy fatty acid sphingosine and alpha-hydroxy fatty acid sphingosine ceramides were elevated (P < .01 and .05, respectively) as compared with healthy children. Thymic stromal lymphopoietin and IL-13 levels were increased in the SC of future AD subjects (by 74.5% and 78.3%, P = .0022 and P < .0001, respectively). Multivariable logistic regression analysis revealed strong AD predicting power of the combination of family history, type 2 cytokines, and dysregulated lipids, with an odds ratio reaching 54.0 (95% CI, 9.2-317.5). CONCLUSIONS: Noninvasive skin tape strip analysis at age 2 months can identify asymptomatic children at risk of future AD development with a high probability.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/diagnóstico , Citocinas/análise , Esfingosina , Qualidade de Vida , Pele/química , Ceramidas , Ácidos Graxos , Biomarcadores/análise
12.
Nat Commun ; 13(1): 6076, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241618

RESUMO

The Fermi-Dirac distribution of carriers and the drift-diffusion mode of transport represent two fundamental barriers towards the reduction of the subthreshold slope (SS) and the optimization of the energy consumption of field-effect transistors. In this study, we report the realization of steep-slope impact ionization field-effect transistors (I2FETs) based on a gate-controlled homogeneous WSe2 lateral junction. The devices showed average SS down to 2.73 mV/dec over three decades of source-drain current and an on/off ratio of ~106 at room temperature and low bias voltages (<1 V). We determined that the lucky-drift mechanism of carriers is valid in WSe2, allowing our I2FETs to have high impact ionization coefficients and low SS at room temperature. Moreover, we fabricated a logic inverter based on a WSe2 I2FET and a MoS2 FET, exhibiting an inverter gain of 73 and almost ideal noise margin for high- and low-logic states. Our results provide a promising approach for developing functional devices as front runners for energy-efficient electronic device technology.

13.
Macromol Rapid Commun ; 43(19): e2200277, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35611445

RESUMO

The development of conjugated polymers with structures that are suitable for efficient molecular doping and charge transport is a key challenge in the construction of high-performance conjugated polymer-based thermoelectric devices. In this study, three novel conjugated polymers based on dithienopyrrole (DTP) are synthesized and their thermoelectric properties are compared. When doped with p-dopant, a donor-acceptor type copolymer, DPP-MeDTP, exhibits higher electrical conductivity and thermoelectric power factor compared to the other donor-donor type copolymers. The high electrical conductivity of DPP-MeDTP compared to the other polymers originates from the high degree of backbone planarity and molecular order, which contributes to its high charge carrier mobility. In addition, the highly crystalline structure of DPP-MeDTP is well maintained upon doping, while the crystalline order of the other polymers decreases significantly upon doping. The findings of this work not only provide insights into the design of DTP-based conjugated polymers for thermoelectric use but also demonstrate the significance of a high degree of molecular order and structural robustness upon doping to achieve high thermoelectric performance.

14.
Adv Sci (Weinh) ; 9(21): e2200566, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35570404

RESUMO

To address the demands of emerging data-centric computing applications, ferroelectric field-effect transistors (Fe-FETs) are considered the forefront of semiconductor electronics owing to their energy and area efficiency and merged logic-memory functionalities. Herein, the fabrication and application of an Fe-FET, which is integrated with a van der Waals ferroelectrics heterostructure (CuInP2 S6 /α-In2 Se3 ), is reported. Leveraging enhanced polarization originating from the dipole coupling of CIPS and α-In2 Se3 , the fabricated Fe-FET exhibits a large memory window of 14.5 V at VGS = ±10 V, reaching a memory window to sweep range of ≈72%. Piezoelectric force microscopy measurements confirm the enhanced polarization-induced wider hysteresis loop of the double-stacked ferroelectrics compared to single ferroelectric layers. The Landau-Khalatnikov theory is extended to analyze the ferroelectric characteristics of a ferroelectric heterostructure, providing detailed explanations of the hysteresis behaviors and enhanced memory window formation. The fabricated Fe-FET shows nonvolatile memory characteristics, with a high on/off current ratio of over 106 , long retention time (>104 s), and stable cyclic endurance (>104 cycles). Furthermore, the applicability of the ferroelectrics heterostructure is investigated for artificial synapses and for hardware neural networks through training and inference simulation. These results provide a promising pathway for exploring low-dimensional ferroelectronics.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35564506

RESUMO

Urbanization is causing an increase in air pollution leading to serious health issues. However, even though the necessity of its regulation is acknowledged, there are relatively few monitoring sites in the capital metropolitan city of the Republic of Korea. Furthermore, a significant relationship between air pollution and climate variables is expected, thus the prediction of air pollution under climate change should be carefully attended. This study aims to predict and spatialize present and future NO2 distribution by using existing monitoring sites to overcome deficiency in monitoring. Prediction was conducted through seasonal Land use regression modeling using variables correlated with NO2 concentration. Variables were selected through two correlation analyses and future pollution was predicted under HadGEM-AO RCP scenarios 4.5 and 8.5. Our results showed a relatively high NO2 concentration in winter in both present and future predictions, resulting from elevated use of fossil fuels in boilers, and also showed increments of NO2 pollution due to climate change. The results of this study could strengthen existing air pollution management strategies and mitigation measures for planning concerning future climate change, supporting proper management and control of air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Mudança Climática , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Estações do Ano
16.
ACS Nano ; 16(5): 7713-7720, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35499240

RESUMO

In this study, we present single-crystalline pyramid-shaped (SP) TiCx particles synthesized on a stacked melt (copper)-solid (titanium) substrate using a biphase diffusion synthesis (BDS) method, in which different sizes ranging from nano- to micrometer scale were obtained within the copper melt with the {100} planes exposed to air. Direct observation and further plasma treatment of the pyramids at different self-assembly stages facilitated the investigation of their growth mode, especially in the horizontal plane. The dendritic growth mode along with the edge and corner-shared modes of the SP TiCx particles frozen on the copper surface was investigated. With SP TiCx particles stacked on top, MoS2-based phototransistors exhibited an up to 6-fold photocurrent increase under laser illumination at different wavelengths, which was attributed to the localized surface plasmonic resonance (LSPR) effect. The BDS method is applied for the synthesis of SP TiCx particles, with a detailed investigation of the relevant growth mode and related applications, such as decoration for high-performance photodevices.

17.
Nat Commun ; 13(1): 104, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256609

RESUMO

Recent advances in metal additive manufacturing (AM) have provided new opportunities for prompt designs of prototypes and facile personalization of products befitting the fourth industrial revolution. In this regard, its feasibility of becoming a green technology, which is not an inherent aspect of AM, is gaining more interests. A particular interest in adapting and understanding of eco-friendly ingredients can set its important groundworks. Here, we demonstrate a water-based solid-phase binding agent suitable for binder jetting 3D printing of metals. Sodium salts of common fruit acid chelators form stable metal-chelate bridges between metal particles, enabling elaborate 3D printing of metals with improved strengths. Even further reductions in the porosity between the metal particles are possible through post-treatments. A compatibility of this chelation chemistry with variety of metals is also demonstrated. The proposed mechanism for metal 3D printing can open up new avenues for consumer-level personalized 3D printing of metals.


Assuntos
Frutas , Impressão Tridimensional , Quelantes , Metais , Porosidade
18.
ACS Nano ; 16(4): 5418-5426, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35234041

RESUMO

Channel current conduction modulation with the spontaneous polarization of ferroelectric films in ferroelectric field-effect transistors (FeFETs) has been widely investigated. Low interface quality and thermodynamic instability owing to the presence of dangling bonds in the conventional ferroelectrics have limited the memory retention and endurance of FeFETs. This, in turn, prevents their commercialization. However, the atomically thin nature of 2D ferroelectric, semiconducting, and insulating films facilitate the achievement of trap-free interfaces as van der Waal heterostructures (vdWHs) to develop FeFETs with long data retention and endurance characteristics. Here, we demonstrate a 2D vdWH FeFET fabricated with ferroelectric CuInP2S6 (CIPS), hexagonal boron nitride (h-BN) as the dielectric, and InSe as the ferroelectric semiconductor channel. The device shows an excellent performance as nonvolatile memory (NVM) with its large memory window (4.6 V at a voltage sweep of 5 V), high drain current on/off ratio (>104), high endurance, and long data retention (>104 s). These results demonstrate the considerable potential of vdWHs for the development of FeFETs for logic and NVM applications.

19.
Small ; 17(34): e2102595, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34272918

RESUMO

MXenes, an emerging class of two-dimensional (2D) transition metal carbides and nitrides, have attracted wide attention because of their fascinating properties required in functional electronics. Here, an atomic-switch-type artificial synapse fabricated on Ti3 C2 Tx MXene nanosheets with lots of surface functional groups, which successfully mimics the dynamics of biological synapses, is reported. Through in-depth analysis by X-ray photoelectron spectroscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, it is found that the synaptic dynamics originated from the gradual formation and annihilation of the conductive metallic filaments on the MXene surface with distributed functional groups. Subsequently, via training and inference tasks using a convolutional neural network for the Canadian-Institute-For-Advanced-Research-10 dataset, the applicability of the artificial MXene synapse to hardware neural networks is demonstrated.


Assuntos
Eletrônica , Sinapses , Canadá , Redes Neurais de Computação , Titânio
20.
Cancers (Basel) ; 13(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208345

RESUMO

The role of telomerase reverse transcriptase (TERT) promoter mutations as an independent poor prognostic factor in differentiated thyroid cancer (DTC) patients is well known, but there is no prognostic system that combines the TERT promoter mutation status with tumor-node-metastasis (TNM) stage to predict cancer-specific survival (CSS). A total of 393 patients with pathologically confirmed DTC after thyroidectomy were enrolled. After incorporating wild-type TERT and mutant TERT with stages I, II, and III/IV of the AJCC TNM system 8th edition (TNM-8), we generated six combinations and calculated 10-year and 15-year CSS and adjusted hazard ratios (HRs) for cancer-related death using Cox regression. Then, a new mortality prediction model termed TNM-8T was derived based on the CSS and HR of each combination in the four groups. Of the 393 patients, there were 27 (6.9%) thyroid cancer-related deaths during a median follow-up of 14 years. Patients with a more advanced stage had a lower survival rate (10-year CSS for TNM-8T stage 1, 2, 3, and 4: 98.7%, 93.5%, 77.3%, and 63.0%, respectively; p < 0.001). TNM-8T showed a better spread of CSS (p < 0.001) than TNM-8 (p = 0.002) in the adjusted survival curves. The C-index for mortality risk predictability was 0.880 (95% CI, 0.665-0.957) in TNM-8T and 0.827 (95% CI, 0.622-0.930) in TNM-8 (p < 0.001). TNM-8T, a new prognostic system that incorporates the TERT mutational status into TNM-8, showed superior predictability to TNM-8 in the long-term survival of DTC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...