Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Lett ; 31(6): 851-5, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19205889

RESUMO

Electrochemical properties of composite films consisting of polyaniline/carboxydextran (PANI/carDEX) as a biofuel cell electrode platform were investigated. These composite films were formed on a planar gold surface through electropolymerization after a simple chemical modification of dextran with carboxyl groups. Cyclic voltammetry indicated that the composite films retained a redox activity in neutral pH environment. The PANI/carDEX composite films showed an electrocatalytic activity for the oxidation of ascorbic acid. The PANI/carDEX composite films also demonstrated an excellent electron-transfer mediating capability for the bioelectrocatalytic activation of glucose oxidase (GOx) toward the oxidation of glucose.


Assuntos
Compostos de Anilina/metabolismo , Fontes de Energia Bioelétrica , Dextranos/metabolismo , Misturas Complexas/metabolismo , Glucose/metabolismo , Glucose Oxidase/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução
2.
Langmuir ; 23(9): 5097-9, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17378591

RESUMO

Gold nanoparticles linked to linear carboxylated dextran chains were attached to 3-aminopropyltriethoxysilane-functionalized glass surfaces. This method provides novel hybrid nanostructures on a surface with the unique optical properties of gold nanoparticles. The particles attached to the surface retain the capability to aggregate and disaggregate in response to their environment. This procedure presents an alternative method to the immobilization of gold nanoparticles onto planar substrates. Compared to gold nanoparticle monolayers, larger particle surface densities were obtained. Exposure to hydrophobic environments changes the conformation of the hydrophilic dextran chains, causing the gold nanoparticles to aggregate and inducing changes in the absorption spectrum such as red-shifting and broadening of the plasmon absorption peaks. These changes, characteristic of particle aggregation, are reversible. When the substrates are dried and then immersed in an aqueous environment, these changes can be visually observed in a reversible fashion and the sample changes color from the red color of colloidal gold to a bluish-purple color of aggregated nanoparticles. Surface-bound nanoparticles that retain their mobility when attached to a surface by means of a flexible polymer chain could expand the use of aggregation-based assays to solid substrates.

3.
Anal Chem ; 77(22): 7204-11, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16285667

RESUMO

The formation of a hybrid metal-biopolymer material is described. The synthesis of this material consists of functionalizing the surface of gold nanoparticles through a series of steps that lead to epoxy-functionalized nanoparticles. These are subsequently reacted with hydroxyl moieties of the alpha-D-glucopyranosyl groups of dextran. Subsequently, the dextran chains are carboxylated through treatment with bromoacetic acid. The resultant material combines the unique optical properties of gold nanoparticles with the versatility that carboxylated dextran offers for further functionalization with biomolecules. The interaction of this material with three proteins was then investigated through changes in the plasmon resonance properties of the gold nanoparticles. Concanavalin A, a lectin that binds glucose and mannose by means of specific molecular recognition, interacts readily with this material and such interaction is easily detected using optical absorption spectroscopy. Through reaction of the carboxyl groups with (+)-biotinyl-3,6,9,-trioxaundecanediamine, a material bearing biotin groups was obtained. This could interact with streptavidin or antibiotin by means of specific molecular recognition. Further confirmation of biospecific interactions was obtained with control experiments in which the binding sites were blocked through preincubation of the proteins with the corresponding ligand in solution. Binding of these proteins was concentration-dependent over a wide concentration range. This material provides a simple and convenient colorimetric method for biospecific interaction analysis.


Assuntos
Dextranos/química , Ouro/química , Nanopartículas/química , Biotina/química , Biotina/metabolismo , Coloides/química , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Análise Espectral , Estreptavidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...