Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(7): 8930-8938, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38326747

RESUMO

Polytetrafluoroethylene (PTFE)-based dry process for lithium-ion batteries is gaining attention as a battery manufacturing scheme can be simplified with drastically reducing environmental damage. However, the electrochemical instability of PTFE in a reducing environment has hampered the realization of the high-performance dry-processed anode. In this study, we present a non-electroconductive and highly ionic-conductive polymer coating on graphite to mitigate the electrochemical degradation of the PTFE binder and minimize the coating resistance. Poly(ethylene oxide) (PEO) and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) coatings on the anode material effectively inhibit the electron transfer from graphite to PTFE, thereby alleviating the PTFE breakdown. The graphite polymer coatings improved initial Coulombic efficiencies of full cells from 67.2% (bare) to 79.1% (PEO) and 77.8% (P(VDF-TrFE-CFE)) and increased initial discharge capacity from 157.7 mAh g(NCM)-1 (bare) to 185.1 mAh g(NCM)-1 (PEO) and 182.5 mAh g(NCM)-1 (P(VDF-TrFE-CFE)) in the full cells. These outcomes demonstrate that PTFE degradation in the anode can be surmounted by adjusting the electron transfer to the PTFE.

2.
ACS Appl Mater Interfaces ; 15(29): 34931-34940, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37458421

RESUMO

Sulfide-based all-solid-state batteries (ASSBs) have emerged as promising candidates for next-generation energy storage systems owing to their superior safety and energy density. A conductive agent is necessarily added in the cathode composite of ASSBs to facilitate electron transport therein, but it causes the decomposition of the solid electrolyte and ultimately the shortening of lifetime. To resolve this dilemmatic situation, herein, we report a rationally designed solution-processible coating of zinc oxide (ZnO) onto vapor-grown carbon fiber as a conductive agent to reduce the contact between the carbon additive and the solid electrolyte and still maintain electron pathways to the active material. ASSBs with the carbon additive with an optimal coating of ZnO have markedly improved cycling performance and rate capability compared to those with the bare conductive agent, which can be attributed to hindering the decomposition of the solid electrolytes. The results highlight the usefulness of controlling the interparticle contacts in the composite cathodes in addressing the challenging interfacial degradation of sulfide-based ASSBs and improving their key electrochemical properties.

3.
Blood Res ; 58(1): 71-76, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36987618

RESUMO

Background: Light-chain amyloidosis (AL) is the most common form of systemic amyloidosis. This study aimed to evaluate the usefulness of laboratory tests for light-chain clonality and bone marrow (BM) findings in AL amyloidosis. Methods: We retrospectively enrolled patients newly diagnosed with AL amyloidosis on pathological examination who underwent a BM biopsy. Laboratory test data for light-chain clonality were collected and compared. Amyloid deposits were identified with H&E, Congo red, and PAS stains. Results: We reviewed 98 patients with AL amyloidosis. Light chain clonality (λ, 64 cases; κ, 34 cases) was detected by serum immunofixation electrophoresis (IFE) (63.3%), urine IFE (70.8%), serum protein electrophoresis (PEP) (44.9%), urine PEP (44.8%), serum free light chain (SFLC) ratio (79.5%), and BM immunohistochemistry (IHC) (85.7%). Flow cytometric (FCM) assay identified aberrant BM plasma cells in 92.9% of cases. BM amyloid deposits were identified in 35 of the 98 cases (35.7%); 71.4% (25/35) were Congo red-positive, and 100.0% (35/35) were PAS-positive. Conclusion: Laboratory tests for detecting light-chain clonality in AL amyloidosis in order of sensitivity include FCM assay for aberrant plasma cells, IHC for light chains on BM biopsy or clot section, SFLC ratio, and serum and urine IFE. Congo red staining of BM samples remains an important tool for identifying amyloid deposits in BM. Periodic acid-Schiff (PAS) staining can be useful in diagnosing some cases of Congo red-negative amyloidosis.

4.
Adv Mater ; 34(40): e2203580, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35953451

RESUMO

All-solid-state batteries (ASSBs) that employ anode-less electrodes have drawn attention from across the battery community because they offer competitive energy densities and a markedly improved cycle life. Nevertheless, the composite matrices of anode-less electrodes impose a substantial barrier for lithium-ion diffusion and inhibit operation at room temperature. To overcome this drawback, here, the conversion reaction of metal fluorides is exploited because metallic nanodomains formed during this reaction induce an alloying reaction with lithium ions for uniform and sustainable lithium (de)plating. Lithium fluoride (LiF), another product of the conversion reaction, prevents the agglomeration of the metallic nanodomains and also protects the electrode from fatal lithium dendrite growth. A systematic analysis identifies silver (I) fluoride (AgF) as the most suitable metal fluoride because the silver nanodomains can accommodate the solid-solution mechanism with a low nucleation overpotential. AgF-based full cells attain reliable cycling at 25 °C even with an exceptionally high areal capacity of 9.7 mAh cm-2 (areal loading of LiNi0.8 Co0.1 Mn0.1 O2  = 50 mg cm-2 ). These results offer useful insights into designing materials for anode-less electrodes for sulfide-based ASSBs.

5.
Acc Chem Res ; 54(17): 3390-3402, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34402619

RESUMO

ConspectusAll-solid-state batteries (ASSBs) are considered to be a next-generation energy storage concept that offers enhanced safety and potentially high energy density. The identification of solid electrolytes (SEs) with high ionic conductivity was the stepping-stone that enabled the recent surge in activity in this research area. Among the various types of SEs, including those based on oxides, sulfides, polymers, and hybrids thereof, sulfide-based SEs have gained discernible attention owing to their exceptional room temperature ionic conductivity comparable even to those of their liquid electrolyte counterparts. Moreover, the good deformability of sulfide SEs renders them suitable for reducing the interfacial resistance between particles, thereby obviating the need for high-temperature sintering. Nevertheless, sulfide-based ASSB technology still remains at the research stage without any manufacturing schemes having been established. This state of affairs originates from the complex challenges presented by various aspects of these SEs: their weak stability in air, questions surrounding the exact combination of slurry solvent and polymeric binder for solution-based electrode fabrication, their high interfacial resistance resulting from solid particle contacts, and limited scalability with respect to electrode fabrication and cell assembly. In this Account, we review recent developments in which these issues were addressed by starting with the materials and moving on to processing, focusing on new trials. As for enhancing the air stability of sulfide SEs, strengthening the metal-sulfur bond based on the hard-soft acid-base (HSAB) theory has yielded the most notable results, although the resulting sacrificed energy density and weakened anode interface stability would need to be resolved. Novel electrode fabrication techniques that endeavor to overcome the critical issues originating from the use of sulfide SEs are subsequently introduced. The wet chemical coating process can take advantage of the know-how and facilities inherited from the more established lithium-ion batteries (LIBs). However, the dilemmatic matter of contention relating to the polarity mismatch among the slurry solvent, SE, and binder requires attention. Recent solutions to these problems involved the exploration of various emerging concepts, such as polarity switching during electrode fabrication, fine polarity tuning by accurate grafting, and infiltration of the electrode voids by a solution of the SE. The process of using a dry film with a fibrous binder has also raised interest, motivated by lowering the manufacturing cost, maintaining the environment, and boosting the volumetric energy density. Finally, optimization of the cell assembly and operation is reviewed. In particular, the application of external pressure to each unit cell has been universally adopted both in the fabrication step and during cell operation to realize high cell performance. The effect of pressurization is discussed by correlating it with the interface stability and robust interparticle contacts. Based on the significant progress that has been made thus far, we aim to encourage the battery community to engage their wide-ranging expertise toward advancing sulfide-based ASSBs that are practically feasible.

6.
J Clin Lab Anal ; 34(12): e23524, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32812259

RESUMO

BACKGROUND: As next-generation sequencing (NGS) technology matures, various amplicon-based NGS tests for BRCA1/2 genotyping have been introduced. This study was designed to evaluate an NGS test using a newly released amplicon-based panel, AmpliSeq for Illumina BRCA Panel (AmpliSeq panel), for detection of clinically significant BRCA variants, and to compare it to another amplicon-based NGS test confirmed by Sanger sequencing. METHODS: We reviewed BRCA test results done by NGS using the TruSeq Custom Amplicon kit from patients suspected of hereditary breast/ovarian cancer syndrome (HBOC) in 2018. Of those, 96 residual samples with 100 clinically significant variants were included in this study using predefined criteria: 100 variants were distributed throughout the BRCA1 and BRCA2 genes. All target variants were confirmed by Sanger sequencing. Duplicate NGS testing of these samples was performed using the AmpliSeq panel, and the concordance of results from the two amplicon-based NGS tests was assessed. RESULTS: Ninety-nine of 100 variants were detected in duplicate BRCA1/2 genotyping using the AmpliSeq panel (sensitivity, 99%; specificity, 100%). In the discordant case, one variant (BRCA1 c.3627dupA) was found only in repeat 1, but not in repeat 2. Automated nomenclature of all variants, except for two indel variants, was in consensus with Human Genome Variation Society nomenclature. CONCLUSION: Our findings confirm that the analytic performance of the AmpliSeq panel is satisfactory, with high sensitivity and specificity.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Feminino , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
7.
Adv Mater ; 32(37): e2001702, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32767479

RESUMO

Sulfide-based all-solid-state batteries (ASSBs) have been featured as promising alternatives to the current lithium-ion batteries (LIBs) mainly owing to their superior safety. Nevertheless, a solution-based scalable manufacturing scheme has not yet been established because of the incompatible polarity of the binder, solvent, and sulfide electrolyte during slurry preparation. This dilemma is overcome by subjecting the acrylate (co)polymeric binders to protection-deprotection chemistry. Protection by the tert-butyl group allows for homogeneous dispersion of the binder in the slurry based on a relatively less polar solvent, with subsequent heat-treatment during the drying process to cleave the tert-butyl group. This exposes the polar carboxylic acid groups, which are then able to engage in hydrogen bonding with the active cathode material, high-nickel layered oxide. Deprotection strengthens the electrode adhesion such that the strength equals that of commercial LIB electrodes, and the key electrochemical performance parameters are improved markedly in both half-cell and full-cell settings. The present study highlights the potential of sulfide-based ASSBs for scalable manufacturing and also provides insights that protection-deprotection chemistry can generally be used for various battery cells that suffer from polarity incompatibility among multiple electrode components.

8.
ACS Appl Mater Interfaces ; 12(9): 10597-10606, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32031365

RESUMO

The high specific capacity in excess of 200 mAh g-1 and low dependence on cobalt have enhanced the research interest on nickel-rich layered metal oxides as cathode materials for lithium-ion batteries for electric vehicles. Nonetheless, their poor cycle life and thermal stability, resulting from the occurrence of cation mixing between the transition-metal (TM) and lithium ions, are yet to be fully addressed to enable the widespread and reliable use of these materials. Here, we report a two-dimensional (2D) pyrazine-linked covalent organic framework (namely, Pyr-2D) as a coating material for nickel-rich layered cathodes to mitigate unwanted TM dissolution and interfacial reactions. The Pyr-2D coating layer, especially the 2D planar morphology and conjugated atomic configuration of Pyr-2D, protects the electrode surface effectively during cycling without sacrificing the electric conductivity of the host material. As a result, Pyr-2D-coated nickel-rich layered cathodes exhibited superior cyclability, rate performance, and thermal stability. The present study highlights the potential ability of 2D conjugated covalent organic frameworks to improve the key electrochemical properties of emerging battery electrodes.

10.
J Clin Virol ; 109: 41-44, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419551

RESUMO

BACKGROUND: Anti-HBc IgG is almost always detected in hepatitis B virus (HBV)-infected individuals and persists in resolved infections. In certain cases, anti-HBc IgG is the only serological marker and anti-HBc-positive result generally means anti-HBc total positivity. OBJECTIVES: To evaluate the clinical sensitivity and specificity of an investigational medical device, Elecsys Anti-HBc II, using samples from the Korean population. Agreement between Elecsys Anti-HBc II and its widely utilized predecessor Elecsys Anti-HBc was also evaluated. STUDY DESIGN: Residual serum or plasma samples stored at below -20 °C without individual identifiers were used in this study. This study had 106 randomly selected HBV deoxyribonucleic acid (DNA)-positive samples used for evaluating clinical sensitivity. For clinical specificity, a total of 239 both HBV DNA and hepatitis B surface antigen-negative samples, which were anti-HBc-negative by Elecsys Anti-HBc, were used. Agreement between Elecsys Anti-HBc and Elecsys Anti-HBc II was evaluated in total 345 samples. The Architect Anti-HBc II was used as a confirmatory test regarding discrepancies between Elecsys Anti-HBc and Elecsys Anti-HBc II results. RESULTS: The clinical sensitivity and specificity of Elecsys Anti-HBc II were found to be 99.06% and 100%, respectively. In total, 345 samples showed 100% agreement. Both positive and negative agreements were also 100%. CONCLUSIONS: The clinical performance of Elecsys Anti-HBc II was confirmed as sufficient in Korean samples. Elecsys Anti-HBc II demonstrated an exceptional performance, exceeding the requirements of the Ministry of Food and Drug Safety and confirming its reliability as an in vitro diagnostic device for HBV diagnosis in Korea.


Assuntos
Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/isolamento & purificação , Hepatite B/diagnóstico , Testes Sorológicos/métodos , DNA Viral/sangue , Hepatite B/sangue , Anticorpos Anti-Hepatite B/sangue , Vírus da Hepatite B/genética , Humanos , Kit de Reagentes para Diagnóstico , Reprodutibilidade dos Testes , República da Coreia , Sensibilidade e Especificidade , Método Simples-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...