Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 12(8): 3611-3623, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33900308

RESUMO

Particulate matter (PM2.5) is a risk factor for the deterioration of atopic dermatitis (AD) and certain constituents of PM2.5 can induce inflammation via oxidative stress. Natural functional foods, including antioxidative blueberry and black rice, can be the best alternative for the development of AD therapy. Thus, we investigated whether PM2.5 regulated the expression of proinflammatory cytokines involved in the progression of AD and further investigated the improvement effect of fermented blueberry and black rice extract (FBBBR) containing Lactobacillus plantarum MG4221 in vitro and in vivo. The FBBBR treatment significantly ameliorated skin inflammation compared with the control treatments via regulation of the mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) pathways in PM2.5-treated HaCaT cells. In PM2.5/dinitrochlorobenzene (DNCB)-treated NC/Nga mice, the oral administration of FBBBR significantly decreased transepidermal water loss and erythema, the incidence of scratching behavior, and the production of serum immunoglobin E and T helper 2-associated cytokine and, similar to dexamethasone treatment, up-regulated the protein expression of filaggrin and involucrin in skin tissue. Syringic acid and kuromanin, standard compounds found in FBBBR, significantly decreased the interleukin (IL)-1ß, IL-6 and IL-8 levels in PM2.5-treated HaCaT cells. Therefore, we can suggest that FBBBR may serve as an important functional food for AD.


Assuntos
Mirtilos Azuis (Planta) , Dermatite Atópica/prevenção & controle , Lactobacillus plantarum , Oryza , Extratos Vegetais/administração & dosagem , Animais , Dermatite Atópica/induzido quimicamente , Dinitroclorobenzeno , Modelos Animais de Doenças , Fermentação , Proteínas Filagrinas , Alimento Funcional , Células HaCaT/efeitos dos fármacos , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Material Particulado , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos
2.
Nutrients ; 13(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503991

RESUMO

N-retinylidene-N-retinylethanolamine (A2E) accumulation in the retina is a prominent marker of retinal degenerative diseases. Blue light exposure is considered as an important factor contributing to dry age-related macular degeneration (AMD). Eggplant and its constituents have been shown to confer health benefits, but their therapeutic effects on dry AMD remain incompletely understood. In this study, we showed that an extract of Solanum melongena L. (EPX) protected A2E-laden ARPE-19 cells against blue light-induced cell death via attenuating reactive oxygen species. Transcriptomic analysis demonstrated that blue light modulated the expression of genes associated with stress response, inflammation, and cell death, and EPX suppressed the inflammatory pathway induced by blue light in A2E-laden ARPE-19 cells by inhibiting the nuclear translocation of nuclear factor kappa B and transcription of pro-inflammatory genes (CXCL8 and IL1B). The degradation of intracellular A2E was considered the major mechanism underlying the protective effect of EPX. Moreover, chlorogenic acid isolated from EPX exerted protective effects against blue light-induced cell damage in A2E-laden ARPE-19 cells. In vivo, EPX administration in BALB/c mice reduced the fundus damage and degeneration of the retinal layer in a blue light-induced retinal damage model. Collectively, our findings suggest the potential role of Solanum melongena L. extract for AMD treatment.


Assuntos
Dermatite Fototóxica/prevenção & controle , Extratos Vegetais/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Pigmentos da Retina/metabolismo , Solanum melongena , Animais , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Luz , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/metabolismo , Epitélio Pigmentado da Retina/metabolismo
3.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731326

RESUMO

Skin hyperpigmentation is generally characterized by increased synthesis and deposition of melanin in the skin. UP256, containing bakuchiol, is a well-known medication for acne vulgaris. Acne sometimes leaves dark spots on the skin, and we hypothesized that UP256 may be effective against hyperpigmentation-associated diseases. UP256 was treated for anti-melanogenesis and melanocyte dendrite formation in cultured normal human epidermal melanocytes as well as in the reconstituted skin and zebrafish models. Western blot analysis and glutathione S-transferase (GST)-pull down assays were used to evaluate the expression and interaction of enzymes related in melanin synthesis and transportation. The cellular tyrosinase activity and melanin content assay revealed that UP256 decreased melanin synthesis by regulating the expression of proteins related on melanogenesis including tyrosinase, TRP-1 and -2, and SOX9. UP256 also decreased dendrite formation in melanocytes via regulating the Rac/Cdc42/α-PAK signaling proteins, without cytotoxic effects. UP256 also inhibited ciliogenesis-dependent melanogenesis in normal human epidermal melanocytes. Furthermore, UP256 suppressed melanin contents in the zebrafish and the 3D human skin tissue model. All things taken together, UP256 inhibits melanin synthesis, dendrite formation, and primary cilium formation leading to the inhibition of melanogenesis.


Assuntos
Cílios/enzimologia , Regulação Enzimológica da Expressão Gênica , Hiperpigmentação/enzimologia , Melanócitos/enzimologia , Monofenol Mono-Oxigenase/biossíntese , Transdução de Sinais , Regulação para Cima , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Cílios/patologia , Dendritos/enzimologia , Dendritos/patologia , Humanos , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/patologia , Fatores de Transcrição SOX9/metabolismo , Tripsina/metabolismo
5.
Molecules ; 23(3)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29518052

RESUMO

This study aimed to determine the anti-osteoclastogenic effects of extracts from Aronia melanocarpa 'Viking' (AM) and identify the underlying mechanisms in vitro. Reactive oxygen species (ROS) are signal mediators in osteoclast differentiation. AM extracts inhibited ROS production in RAW 264.7 cells in a dose-dependent manner and exhibited strong radical scavenging activity. The extracts also attenuated the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. To attain molecular insights, the effect of the extracts on the signaling pathways induced by receptor activator of nuclear factor kappa B ligand (RANKL) were also investigated. RANKL triggers many transcription factors through the activation of mitogen-activated protein kinase (MAPK) and ROS, leading to the induction of osteoclast-specific genes. The extracts significantly suppressed RANKL-induced activation of MAPKs, such as extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38 and consequently led to the downregulation of c-Fos and nuclear factor of activated T cells 1 (NFATc1) protein expression which ultimately suppress the activation of the osteoclast-specific genes, cathepsin K, TRAP, calcitonin receptor and integrin ß3. In conclusion, our findings suggest that AM extracts inhibited RANKL-induced osteoclast differentiation by downregulating ROS generation and inactivating JNK/ERK/p38, nuclear factor kappa B (NF-κB)-mediated c-Fos and NFATc1 signaling pathway.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Photinia/química , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/metabolismo , Animais , Antocianinas/química , Antioxidantes/química , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Flavonoides , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Fenóis , Compostos Fitoquímicos/química , Extratos Vegetais/química , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
J Agric Food Chem ; 66(1): 99-107, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29260547

RESUMO

The present study aimed to evaluate the preventive effects of highbush blueberry (Vaccinium corymbosum L.) vinegar (BV) on cognitive functions in a scopolamine (Sco)-induced amnesia model in mice. In this study, Sco (1 mg/kg, intraperitoneal injection) was used to induce amnesia. ICR mice were orally administered donepezil (5 mg/kg), blueberry extract (120 mg/kg), and BV (120 mg/kg) for 7 days. After inducing cognitive impairment by Sco, a behavioral assessment using behavior tests (i.e., Y-maze and passive avoidance tests) was performed. The BV group showed significantly restored cognitive function in the behavioral tests. BV facilitated cholinergic activity by inhibiting acetylcholinesterase activity, and enhanced antioxidant enzyme activity. Furthermore, BV was found to be rehabilitated in the cornu ammonis 1 neurons of hippocampus. In our study, we demonstrated that the memory protection conferred by BV was linked to activation of brain-derived neurotrophic factor (BDNF)/cAMP response element binding protein (CREB)/serine-threonine kinase (AKT) signaling.


Assuntos
Amnésia/tratamento farmacológico , Mirtilos Azuis (Planta)/química , Cognição/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Amnésia/induzido quimicamente , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Aprendizagem em Labirinto , Camundongos Endogâmicos ICR , Extratos Vegetais/química , Escopolamina/toxicidade
7.
Oxid Med Cell Longev ; 2017: 8379539, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900534

RESUMO

The skin is the outermost protective barrier between the internal and external environments in humans. Chronic exposure to ultraviolet (UV) radiation is a major cause of skin aging. UVB radiation penetrates the skin and induces ROS production that activates three major skin aging cascades: matrix metalloproteinase- (MMP-) 1-mediated aging; MAPK-AP-1/NF-κB-TNF-α/IL-6, iNOS, and COX-2-mediated inflammation-induced aging; and p53-Bax-cleaved caspase-3-cytochrome C-mediated apoptosis-induced aging. These mechanisms are collectively responsible for the wrinkling and photoaging characteristic of UVB-induced skin aging. There is an urgent requirement for a treatment that not only controls these pathways to prevent skin aging but also avoids the adverse effects often encountered when applying bioactive compounds in concentrated doses. In this study, we investigated the efficacy of genetically modified normal edible rice (NR) that produces the antiaging compound resveratrol (R) as a treatment for skin aging. This resveratrol-enriched rice (RR) overcomes the drawbacks of R and enhances its antiaging potential by controlling the abovementioned three major pathways of skin aging. RR does not exhibit the toxicity of R alone and promisingly downregulates the pathways underlying UVB-ROS-induced skin aging. These findings advocate the use of RR as a nutraceutical for antiaging purposes.


Assuntos
Inflamação/metabolismo , Oryza/química , Envelhecimento da Pele/patologia , Estilbenos/metabolismo , Raios Ultravioleta/efeitos adversos , Regulação para Baixo , Humanos , Espécies Reativas de Oxigênio , Resveratrol
8.
J Med Food ; 20(5): 474-484, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28452565

RESUMO

Irritable bowel syndrome (IBS) is a functional gastrointestinal disease with complex pathophysiology involving the brain-gut axis. To assess the effects of Wasabia koreana (WK) on IBS, we employed a mouse model of colonic zymosan injection presenting with diarrhea-predominant IBS-like symptoms. Oral WK administration significantly diminished stool score, suppressed colon length and weight change, and minimized body weight loss without affecting food intake. In WK-treated mice, the submucosal thickening and epithelial lining of the colon were inhibited and were similar to those of naïve mice. Infiltration of mast cells into the colon and serum tumor necrosis factor-α levels were markedly suppressed. These effects were comparable to those of sulfasalazine, an anti-inflammatory drug. Furthermore, the number of visceral pain-related behaviors was significantly decreased, and locomotion activities measured in the elevated plus maze and open field tests were significantly increased by WK in a dose-dependent manner compared with amitriptyline, an antidepressant. These changes were accompanied by reduced FosB2 expression in the brain. Taken together, these data suggest that WK may have potential as a medicinal food for IBS by acting on inflammatory diarrhea and neural activity.


Assuntos
Síndrome do Intestino Irritável/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Wasabia/química , Zimosan/efeitos adversos , Animais , Colo/efeitos dos fármacos , Colo/imunologia , Modelos Animais de Doenças , Humanos , Síndrome do Intestino Irritável/induzido quimicamente , Síndrome do Intestino Irritável/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/análise , Fator de Necrose Tumoral alfa/imunologia
9.
Nat Prod Commun ; 12(1): 11-14, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30549813

RESUMO

Using various chromatographic methods, two new alkaloids, antidesoic acids A (1) and B (2) along with fourteen known compounds (3-16) were isolated from the leaves of Antidesma ghaesembilla Gaertn. Their chemical structures were elucidated by physical and chemical methods. All the isolated compounds were evaluated for their inhibitory activity on LPS-stimulated nitric oxide (NO) production in BV2 cells and RAW 264.7 macrophages. Bisflavone 8 significantly inhibited LPS- stimulated NO production in BV2 cells and RAW 264.7 macrophages with IC50 values of 5.4 and 8.0 µM, respectively. Compounds 1-3, 7, 10, 12, 14, and 16 showed moderate inhibitory activities with IC50 values ranging from 11.7 to 77.4 µM.


Assuntos
Alcaloides/análise , Alcaloides/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Euphorbiaceae/química , Malpighiales/química , Folhas de Planta/química , Animais , Linhagem Celular , Lipopolissacarídeos/farmacologia , Espectroscopia de Ressonância Magnética , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Estrutura Molecular , Óxido Nítrico/biossíntese , Extratos Vegetais/química , Vietnã
10.
J Agric Food Chem ; 64(41): 7733-7742, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27673705

RESUMO

Agastache rugosa (Fisch. & C. A. Mey.) Kuntze has been well-known for its antioxidative properties. This study investigated the anti-melanogenesis effect of demethyleugenol ß-d-glucopyranoside (1) from A. rugosa by studying molecular regulation of melanogenesis in melan-a mouse melanocytes and normal human epidermal melanocytes (NHEMs) and in in vivo models. The SRY (sex-determining region on the Y chromosome)-related high-mobility group (HMG) box 9 (SOX9), one of the critical factors that affect skin pigmentation, is up-regulated. Interestingly, 1 down-regulated the expression of SOX9 and microphthalmia-associated transcription factor (MITF). Reduction of these two transcription factors resulted in a decrease in melanogenic enzymes such as tyrosinase, tyrosinase-related protein 1, and dopachrome tautomerase. As a result, 1 significantly inhibited melanin synthesis in melan-a mouse melanocytes and NHEMs. In addition, the anti-melanogenic effect of 1 was confirmed in zebrafish and reconstructed skin tissue models. In conclusion, 1, as a potent SOX9 regulator, ameliorates skin pigmentation.

11.
Phytomedicine ; 23(8): 872-81, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27288923

RESUMO

BACKGROUND: Lindera neesiana Kurz (Lauraceae), popularly known as Siltimur in Nepal, is an aromatic and spicy plant with edible fruits. It is a traditional herbal medicine widely used for the treatment of diarrhea, tooth pain, headache, and gastric disorders and is also used as a stimulant. PURPOSE: The aim of the present study was to examine in vitro cytoprotective, anti-neuroinflammatory and neuroprotective potential of an aqueous extract of L. neesiana (LNE) fruit using different central nervous system (CNS) cell lines. METHODS: In order to study the neuroprotective potential of LNE, we used three different types of CNS cell lines: murine microglia (BV2), rat glioma (C6), and mouse neuroblastoma (N2a). Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent, and prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and nerve growth factor (NGF) release in the culture media was determined using enzyme linked immunosorbent assay (ELISA) kits. Western blot analysis was performed to determine the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), mitogen activated protein kinase (MAPK) family proteins, Bax, B cell lymphoma (BCL)-2, and cleaved caspase 3. Neurite outgrowth was determined using the IncuCyte imaging system. RESULTS: LNE treatment not only reduced nitric oxide (NO) production in a dose-dependent manner, but also significantly reduced proinflammatory cytokines, iNOS and COX-2 production by lipopolysaccharide (LPS) stimulated BV-2 cells. LNE increased the expression of phosphorylated (p)-extracellular signal-regulated kinase (ERK), whereas p-p38 and p- janus kinase (JNK) expression was significantly decreased in activated microglia. Furthermore, LNE increased cell viability of N2a cells, which was accompanied by decreased caspase-3 expression and the ratio of Bax/Bcl2 protein expression as well as increased NGF and neurite outgrowth, suggesting its neuroprotective potential against LPS-induced effects. Additionally, LNE substantially increased nuclear factor erythroid 2-related factor 2 (Nrf2) secretion in N2a cells and inhibited lipid dehydrogenase (LDH) release in H2O2-stimulated BV2 cells demonstrating the strong anti-inflammatory and antioxidant effects of LNE in CNS cell lines. CONCLUSION: Here we found that water the soluble extract of LNE has promising anti-neuroinflammation and anti-apoptotic properties and identify LNE as a potential natural candidate for neuroprotection.


Assuntos
Anti-Inflamatórios/farmacologia , Frutas/química , Lindera/química , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/farmacologia
12.
Biomol Ther (Seoul) ; 24(5): 543-51, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27169820

RESUMO

This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells.

14.
Biomol Ther (Seoul) ; 24(1): 85-93, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26759706

RESUMO

We already reported that genetically engineered resveratrol-enriched rice (RR) showed to down-regulate skin melanogenesis. To be developed to increase the bioactivity of RR using calli from plants, RR was adopted for mass production using plant tissue culture technologies. In addition, high-pressure homogenization (HPH) was used to increase the biocompatibility and penetration of the calli from RR into the skin. We aimed to develop anti-melanogenic agents incorporating calli of RR (cRR) and nanoparticles by high-pressure homogenization, examining the synergistic effects on the inhibition of UVB-induced hyperpigmentation. Depigmentation was observed following topical application of micro-cRR, nano-calli of normal rice (cNR), and nano-cRR to ultraviolet B (UVB)-stimulated hyperpigmented guinea pig dorsal skin. Colorimetric analysis, tyrosinase immunostaining, and Fontana-Masson staining for UVB-promoted melanin were performed. Nano-cRR inhibited changes in the melanin color index caused by UVB-promoted hyperpigmentation, and demonstrated stronger anti-melanogenic potential than micro-cRR. In epidermal skin, nano-cRR repressed UVB-promoted melanin granules, thereby suppressing hyperpigmentation. The UVB-enhanced, highly expressed tyrosinase in the basal layer of the epidermis was inhibited by nano-cRR more prominently than by micro-cRR and nano-cNR. The anti-melanogenic potency of nano-cRR also depended on pH and particle size. Nano-cRR shows promising potential to regulate skin pigmentation following UVB exposure.

15.
Pigment Cell Melanoma Res ; 29(1): 81-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459162

RESUMO

Piper amides have a characteristic, unsaturated amide group and exhibit diverse biological activities, including proliferation and differentiation of melanocytes, although the molecular mechanisms underlying its antimelanogenesis effect remain unknown. We screened a selected chemical library of newly synthesized Piper amide derivatives and identified (E)-3-(4-(tert-butyl)phenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide (NED-180) as one of the most potent compounds in suppressing melanogenesis. In murine melan-a melanocytes, NED-180 downregulated the expression of melanogenic regulatory proteins including tyrosinase, Tyrp1, Dct, and MITF. PI3K/Akt-dependent phosphorylation of GSK3ß by NED-180 decreases MITF phosphorylation and inhibits melanogenesis without any effects on cytotoxicity and proliferation. Furthermore, topical application of NED-180 significantly ameliorated UVB-induced skin hyperpigmentation in guinea pigs. Interestingly, data obtained using calcium imaging techniques suggested that NED-180 reduced the TPA-induced activation of TRPM1 (melastatin), which could explain the NED-180-induced inhibition of melanogenesis. All things taken together, NED-180 triggers activation of multiple pathways, such as PI3K and ERK, and inhibits TRPM1/TRPV1, leading to inhibition of melanogenesis.


Assuntos
Acrilamidas/uso terapêutico , Amidas/uso terapêutico , Cálcio/metabolismo , Dioxanos/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hiperpigmentação/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Piper/química , Canais de Cátion TRPM/metabolismo , Acrilamidas/farmacologia , Amidas/farmacologia , Animais , Dioxanos/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Cobaias , Células HEK293 , Humanos , Hiperpigmentação/enzimologia , Oxirredutases Intramoleculares/metabolismo , Melaninas/metabolismo , Camundongos , Modelos Biológicos , Monofenol Mono-Oxigenase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pele/efeitos dos fármacos
16.
Bioorg Med Chem Lett ; 25(20): 4562-6, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26341134

RESUMO

Two new sesquiterpene lactone glycosides, 3-O-ß-d-glucopyranosyl-8-hydroxy-(1,5,6,7,11)-guaia-3,10(14)-dien-12,6-olide (1) and 3-O-ß-d-glucopyranosyl-8-(4-hydroxyphenylacetyloxy)-(1.5.6,7)-guaia-3,10(14),11(13)-trien-12,6-olide (2), and 12 known sesquiterpene lactone derivatives (3-14) were isolated from the roots of Ixeris dentata. Their structures were determined by extensive spectroscopic methods including 1D and 2D NMR and MS spectra data. All compounds were tested for their ability to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV-2 microglial cell. 3-O-ß-d-Glucopyranosyl-8-(4-hydroxyphenylacetyloxy)-(1.5.6,7)-guaia-3,10(14),11(13)-trien-12,6-olide (2) showed the most potent inhibitory activity at a concentration of 20µM.


Assuntos
Asteraceae/química , Glicosídeos/farmacologia , Lactonas/farmacologia , Óxido Nítrico/antagonistas & inibidores , Raízes de Plantas/química , Sesquiterpenos/farmacologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Glicosídeos/química , Glicosídeos/isolamento & purificação , Lactonas/química , Lactonas/isolamento & purificação , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/biossíntese , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Relação Estrutura-Atividade
17.
Nat Prod Commun ; 10(7): 1251-2, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26411023

RESUMO

One new phenyl ethyl glycoside, 2-(4-hydroxyphenyl)ethyl-O-α-L-arabinofuranosyl-(1 --> 6)-O-ß-D-glucopyranoide (1) and 11 known compounds (2-12) were isolated from the twigs of Acer tegmentosum. Compound 6 showed potent anti-neuroinflammatory activity against the LPS-stimulated BV-2 microglial cells with tNO production of 25.0 ± 2.5 µM and TNF-α concentration of 617.6 ± 47.1 pg/mL at 30 µM.


Assuntos
Acer/química , Glicosídeos/isolamento & purificação , Animais , Anti-Inflamatórios/análise , Glicosídeos/química , Camundongos
18.
Pharmacogn Mag ; 11(43): 651-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26246745

RESUMO

BACKGROUND: Lespedeza cuneata (Dum. Cours.) G. Don, a perennial legume native to Eastern Asia, has been used therapeutically in traditional Asian medicine to protect the function of liver, kidneys and lungs. However, its effect on inflammatory nitric oxide (NO) production and the active constituents have not yet been explored. OBJECTIVE: In this study, we investigated the phytochemical constituents of L. cuneata and evaluated their effect on NO production using lipopolysaccharide (LPS)-stimulated BV2 cells. MATERIALS AND METHODS: The 80% methanol extract of the aerial part of L. cuneata were used for the isolation of flavonoids. The isolated compounds were elucidated by various spectroscopic methods including nuclear magnetic resonance and mass spectrometry spectrometry. To evaluate the effect on inflammatory NO production, LPS-stimulated murine microglia BV-2 cells were used as a screening system. RESULTS: Nine flavonoids were isolated from the aerial parts of L. cuneata. Among the isolated flavonoids, compounds 4, 5, 7 and 9 are reported from the genus Lespedeza for the first time. Moreover, compounds 1 and 6 showed significant inhibitory effects on NO production in LPS-stimulated BV2 cells without cell toxicity. CONCLUSION: In this study, nine flavonoids were isolated from L. cuneata. Among the compounds, only 1 and 6, which have free hydroxyl groups at both C3 and C7 showed significant inhibitory activity on NO production in LPS-stimulated BV2 cells. These results suggested L. cuneata and its flavonoid constituents as possible candidate for the treatment of various inflammatory diseases.

19.
BMB Rep ; 48(7): 419-25, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25936779

RESUMO

Ginseng has been widely used for therapeutic and preventive purposes for thousands of years. However, orally administered ginseng has very low bioavailability and absorption in the intestine. Therefore, fermented ginseng was developed to enhance the beneficial effects of ginseng in the intestine. In this study, we investigated the molecular mechanisms underlying the anti-inflammatory activity of fermented wild ginseng (FWG). We found that FWG significantly alleviated the severity of colitis in a dextran sodium sulfate (DSS)-induced colitis mouse model, and decreased expression level of pro-inflammatory cytokines in colonic tissue. Moreover, we observed that FWG suppressed the infiltration of macrophages in DSS-induced colitis. FWG also attenuated the transcriptional activity of nuclear factor-κB (NF-κB) by reducing the translocation of NF-κB into the nucleus. Our data indicate that FWG contains anti-inflammatory activity via NF-κB inactivation and could be useful for treating colitis.


Assuntos
Colite/induzido quimicamente , Colite/tratamento farmacológico , Mucosa Intestinal/patologia , NF-kappa B/metabolismo , Panax/química , Extratos Vegetais/uso terapêutico , Transdução de Sinais , Doença Aguda , Administração Oral , Animais , Colite/patologia , Colo/patologia , Citocinas/biossíntese , Sulfato de Dextrana , Feminino , Fermentação , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Inflamação/patologia , Mucosa Intestinal/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo
20.
Biomol Ther (Seoul) ; 22(5): 431-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25414774

RESUMO

Synthetic compounds that are used in the clinic to regulate skin hyperpigmentation, such as arbutin, hydroquinone, and kojic acid, are only moderately effective. But, their use is limited by side effects. As part of an effort to overcome the limitations, we developed resveratrol-enriched rice (RR) using genetic engineering technique. Each of resveratrol and rice has been reported to produce anti-melanogenic effects. Therefore, we hypothesized that RR would show more anti-melanogenic effects than those of resveratrol or rice alone. Anti-melanogenic effect of RR was done by using melan-a mouse melanocytes. The depigmenting efficacy was then observed following topical application of the RR to UVB-stimulated hyperpigmented dorsal skin of guinea pigs. Treatment with RR extract resulted a 21.4 ± 0.7% decrease in tyrosinase expression at melan-a cells. Colorimetric analysis showed a significantly lower depigmenting value by day 9 following treatment with RR in UVB-irradiated guinea pigs the dorsal skin (p<0.01), indicating that RR produced a depigmentation effect. By staining with Fontana-Masson stain, we found that the RR-treated group had more effect histopathologically in epidermal melanin production than resveratrol or rice alone-treated group. RR was associated with reduction in the levels of microphthalmia-associated transcription factor (MITF), and downregulation of tyrosinase and tyrosinase-related protein (TRP-2) expression, leading to inhibit epidermal melanin production by western blot analysis. This study suggests that the resveratrol-enriched rice may be a promising candidate in regulating skin pigmentation with UVB exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...