Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 38(20): e187, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20798177

RESUMO

We herein describe an integrated system for the high-throughput analysis of splicing events and the identification of transcript variants. The system resolves individual splicing events and elucidates transcript variants via a pipeline that combines aspects such as bioinformatic analysis, high-throughput transcript variant amplification, and high-resolution capillary electrophoresis. For the 14 369 human genes known to have transcript variants, minimal primer sets were designed to amplify all transcript variants and examine all splicing events; these have been archived in the ASprimerDB database, which is newly described herein. A high-throughput thermocycler, dubbed GenTank, was developed to simultaneously perform thousands of PCR amplifications. Following the resolution of the various amplicons by capillary gel electrophoresis, two new computer programs, AmpliconViewer and VariantAssembler, may be used to analyze the splicing events, assemble the consecutive exons embodied by the PCR amplicons, and distinguish expressed versus putative transcript variants. This novel system not only facilitates the validation of putative transcript variants and the detection of novel transcript variants, it also semi-quantitatively measures the transcript variant expression levels of each gene. To demonstrate the system's capability, we used it to resolve transcript variants yielded by single and multiple splicing events, and to decipher the exon connectivity of long transcripts.


Assuntos
Processamento Alternativo , Éxons , Biologia Computacional , Primers do DNA , Eletroforese Capilar , Variação Genética , Humanos , Internet , Reação em Cadeia da Polimerase , RNA Mensageiro/química , Transcrição Gênica , Interface Usuário-Computador
2.
BMC Bioinformatics ; 7: 232, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16643672

RESUMO

BACKGROUND: Most virus detection methods are geared towards the detection of specific single viruses or just a few known targets, and lack the capability to uncover the novel viruses that cause emerging viral infections. To address this issue, we developed a computational method that identifies the conserved viral sequences at the genus level for all viral genomes available in GenBank, and established a virus probe library. The virus probes are used not only to identify known viruses but also for discerning the genera of emerging or uncharacterized ones. RESULTS: Using the microarray approach, the identity of the virus in a test sample is determined by the signals of both genus and species-specific probes. The genera of emerging and uncharacterized viruses are determined based on hybridization of the viral sequences to the conserved probes for the existing viral genera. A detection and classification procedure to determine the identity of a virus directly from detection signals results in the rapid identification of the virus. CONCLUSION: We have demonstrated the validity and feasibility of the above strategy with a small number of viral samples. The probe design algorithm can be applied to any publicly available viral sequence database. The strategy of using separate genus and species probe sets enables the use of a straightforward virus identity calculation directly based on the hybridization signals. Our virus identification strategy has great potential in the diagnosis of viral infections. The virus genus and specific probe database and the associated summary tables are available at http://genestamp.sinica.edu.tw/virus/index.htm.


Assuntos
Sondas de DNA/genética , DNA Viral/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Vírus/genética , Vírus/isolamento & purificação , Animais , Sequência de Bases , Doenças Transmissíveis Emergentes/genética , Doenças Transmissíveis Emergentes/virologia , Desenho Assistido por Computador , DNA Viral/classificação , Humanos , Dados de Sequência Molecular , Viroses/genética , Viroses/virologia
3.
Nucleic Acids Res ; 32(12): e99, 2004 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15243142

RESUMO

Gene-specific oligonucleotide probes are currently used in microarrays to avoid cross-hybridization of highly similar sequences. We developed an approach to determine the optimal number and length of gene-specific probes for accurate transcriptional profiling studies. The study surveyed probe lengths from 25 to 1000 nt. Long probes yield better signal intensity than short probes. The signal intensity of short probes can be improved by addition of spacers or using higher probe concentration for spotting. We also found that accurate gene expression measurement can be achieved with multiple probes per gene and fewer probes are needed if longer probes rather than shorter probes are used. Based on theoretical considerations that were confirmed experimentally, our results showed that 150mer is the optimal probe length for expression measurement. Gene-specific probes can be identified using a computational approach for 150mer probes and they can be treated like long cDNA probes in terms of the hybridization reaction for high sensitivity detection. Our experimental data also show that probes which do not generate good signal intensity give erroneous expression ratio measurement results. To use microarray probes without experimental validation, gene-specific probes approximately 150mer in length are necessary. However, shorter oligonucleotide probes also work well in gene expression analysis if the probes are validated by experimental selection or if multiple probes per gene are used for expression measurement.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de Oligonucleotídeos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...