Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(48): 41344-41349, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30387983

RESUMO

While the outstanding charge transport and sunlight-harvesting properties of porphyrin molecules are highly attractive as active materials for organic photovoltaic (OPV) devices, the development of n-type porphyrin-based electron acceptors has been challenging. In this work, we developed a high-performance porphyrin-based electron acceptor for OPVs by substitution of four naphthalene diimide (NDI) units at the perimeter of a Zn-porphyrin (PZn) core using ethyne linkage. Effective π-conjugation between four NDI wings and the PZn core significantly broadened Q-band absorption to the near infrared region, thereby achieving the narrow band gap of 1.33 eV. Employing a windmill-structured tetra-NDI substituted PZn-based acceptor ( PZn-TNDI) and mid-band gap polymer donor (PTB7-Th), the bulk heterojunction OPV devices achieved a power conversion efficiency (PCE) of 8.15% with an energy loss of 0.61 eV. The PCE of our PZn-TNDI-based device was the highest among the reported OPVs using porphyrin-based acceptors. Notably, the amorphous characteristic of PZn-TNDI enabled optimization of the device performance without using any additive, which should make industrial fabrication simpler and cheaper.

2.
Front Chem ; 6: 473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356720

RESUMO

The development of n-type porphyrin acceptors is challenging in organic solar cells. In this work, we synthesized a novel n-type porphyrin acceptor, PZn-TNI, via the introduction of the electron withdrawing naphthalene imide (NI) moiety at the meso position of zinc porphyrin (PZn). PZn-TNI has excellent thermal stability and unique bimodal absorption with a strong Soret band (300-600 nm) and weak Q-band (600-800 nm). The weak long-wavelength absorption of PZn-TNI was completely covered by combining the low bandgap polymer donor, PTB7-Th, which realized the well-balanced panchromatic photon-to-current conversion in the range of 300-800 nm. Notably, the one-step reaction of the NI moiety from a commercially available source leads to the cheap and simple n-type porphyrin synthesis. The substitution of four NIs in PZn ring induced sufficient n-type characteristics with proper HOMO and LUMO energy levels for efficient charge transport with PTB7-Th. Fullerene-free organic solar cells based-on PTB7-Th:PZn-TNI were investigated and showed a promising PCE of 5.07% without any additive treatment. To the best of our knowledge, this is the highest PCE in the porphyrin-based acceptors without utilization of the perylene diimide accepting unit.

3.
ACS Appl Mater Interfaces ; 10(41): 35404-35410, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30234957

RESUMO

Porphyrin derivatives have recently emerged as hole transport layers (HTLs) because of their electron-rich characteristics. Although several successes with porphyrin-based HTLs have been recently reported, achieving excellent solar cell performance, the chances to improve this further by molecular engineering are still open. In this work, Zn porphyrin (PZn)-based HTLs were developed by conjugating fluorinated triphenylamine (FTPA) wings at the perimeter of the PZn core for low-temperature perovskite solar cells (L-PSCs). The fluorinated PZn-HTLs (PZn-2FTPA and PZn-3FTPA) exhibited superior HTL properties compared to the nonfluorinated one (PZn-TPA). Moreover, their deeper highest occupied molecular orbital energy levels were beneficial for boosting open-circuit voltages, and their enhanced face-on stacking improved the hole transport properties. The L-PSC using PZn-2FTPA achieved the highest performance of 18.85%. Thus far, this result is one of the highest reported power conversion efficiencies among the PSCs using porphyrin-based HTLs.

4.
ChemSusChem ; 10(19): 3780-3787, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28875552

RESUMO

The susceptibility of porphyrin derivatives to light-harvesting and charge-transport operations have enabled these materials to be employed in solar cell applications. The potential of porphyrin derivatives as hole-transporting materials (HTMs) for perovskite solar cells (PSCs) has recently been demonstrated, but knowledge of the relationships between the porphyrin structure and device performance remains insufficient. In this work, a series of novel zinc porphyrin (PZn) derivatives has been developed and employed as HTMs for low-temperature processed PSCs. Key to the design strategy is the incorporation of an electron-deficient pyridine moiety to down-shift the HOMO levels of porphyrin HTMs. The porphyrin HTMs incorporating diphenyl-2-pyridylamine (DPPA) have HOMO levels that are in good agreement with the perovskite active layers, thus facilitating hole transfers from the perovskite to the HTMs. The DPPA-containing zinc porphyrin-based PSCs gave the best performance, with efficiency levels comparable to those of PSCs using spiro-OMeTAD, a current state-of-the-art HTM. In particular, PZn-DPPA-based PSCs show superior air stability, in both doped and undoped forms, to spiro-OMeTAD based devices.


Assuntos
Compostos de Bifenilo/química , Compostos de Cálcio/química , Fontes de Energia Elétrica , Óxidos/química , Porfirinas/química , Energia Solar , Titânio/química , Eletroquímica
5.
Sci Rep ; 7: 44704, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28317929

RESUMO

We studied the thermoelectric properties of a diketopyrrolopyrrole-based semiconductor (PDPP3T) via a precisely tuned doping process using Iron (III) chloride. In particular, the doping states of PDPP3T film were linearly controlled depending on the dopant concentration. The outstanding Seebeck coefficient of PDPP3T assisted the excellent power factors (PFs) over 200 µW m-1K-2 at the broad range of doping concentration (3-8 mM) and the maximum PF reached up to 276 µW m-1K-2, which is much higher than that of poly(3-hexylthiophene), 56 µW m-1K-2. The high-mobility of PDPP3T was beneficial to enhance the electrical conductivity and the low level of total dopant volume was important to maintain high Seebeck coefficients. In addition, the low bandgap PDPP3T polymer effiectively shifted its absorption into near infra-red area and became more colorless after doping, which is great advantage to realize transparent electronic devices. Our results give importance guidance to develop thermoelectric semiconducting polymers and we suggest that the use of low bandgap and high-mobility polymers, and the accurate control of the doping levels are key factors for obtaining the high thermoelectric PF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...