Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Chem ; 6(2): 95-96, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38827493
2.
Angew Chem Int Ed Engl ; 63(20): e202320243, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472114

RESUMO

Since Friedrich Wöhler's groundbreaking synthesis of urea in 1828, organic synthesis over the past two centuries has predominantly relied on the exploration and utilization of chemical reactions rooted in two-electron heterolytic ionic chemistry. While one-electron homolytic radical chemistry is both rich in fundamental reactivities and attractive with practical advantages, the synthetic application of radical reactions has been long hampered by the formidable challenges associated with the control over reactivity and selectivity of high-energy radical intermediates. To fully harness the untapped potential of radical chemistry for organic synthesis, there is a pressing need to formulate radically different concepts and broadly applicable strategies to address these outstanding issues. In pursuit of this objective, researchers have been actively developing metalloradical catalysis (MRC) as a comprehensive framework to guide the design of general approaches for controlling over reactivity and stereoselectivity of homolytic radical reactions. Essentially, MRC exploits the metal-centered radicals present in open-shell metal complexes as one-electron catalysts for homolytic activation of substrates to generate metal-entangled organic radicals as the key intermediates to govern the reaction pathway and stereochemical course of subsequent catalytic radical processes. Different from the conventional two-electron catalysis by transition metal complexes, MRC operates through one-electron chemistry utilizing stepwise radical mechanisms.

3.
Nat Chem ; 15(11): 1569-1580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37679462

RESUMO

Metalloradical catalysis (MRC) exploits the metal-centred radicals present in open-shell metal complexes as one-electron catalysts for the generation of metal-stabilized organic radicals-key intermediates that control subsequent one-electron homolytic reactions. Cobalt(II) complexes of porphyrins, as stable 15e-metalloradicals with a well-defined low-spin d7 configuration, have dominated the ongoing development of MRC. Here, to broaden MRC beyond the use of Co(II)-based metalloradical catalysts, we describe systematic studies that establish the operation of Fe(III)-based MRC and demonstrate an initial application for asymmetric radical transformations. Specifically, we report that five-coordinate iron(III) complexes of porphyrins with an axial ligand, which represent another family of stable 15e-metalloradicals with a d5 configuration, are potent metalloradical catalysts for olefin cyclopropanation with different classes of diazo compounds via a stepwise radical mechanism. This work lays a foundation and mechanistic blueprint for future exploration of Fe(III)-based MRC towards the discovery of diverse stereoselective radical reactions.

4.
J Am Chem Soc ; 145(21): 11622-11632, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37129381

RESUMO

Asymmetric radical bicyclization processes have been developed via metalloradical catalysis (MRC) to stereoselectively construct chiral chromanones and chromanes bearing fused cyclopropanes. Through optimization of a versatile D2-symmetric chiral amidoporphyrin ligand platform, a Co(II)-metalloradical system can homolytically activate both diazomalonates and α-aryldiazomethanes containing different alkene functionalities under mild conditions for effective radical bicyclization, delivering cyclopropane-fused tricyclic chromanones and chromanes, respectively, in high yields with excellent control of both diastereoselectivities and enantioselectivities. Combined computational and experimental studies, including the electron paramagnetic resonance (EPR) detection and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) trapping of key radical intermediates, shed light on the working details of the underlying stepwise radical mechanisms of the Co(II)-catalyzed bicyclization processes. The two catalytic radical processes provide effective synthetic tools for stereoselective construction of valuable cyclopropane-fused chromanones and chromanes with newly generated contiguous stereogenic centers. As a specific demonstration of synthetic application, the Co(II)-catalyzed radical bicyclization has been employed as a key step for the first asymmetric total synthesis of the natural product (+)-Radulanin J.

5.
Trends Chem ; 4(9): 850-851, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36338602
6.
Chem Catal ; 2(2): 330-344, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35494099

RESUMO

Diazomalonates have been demonstrated as effective metalloradicophiles for asymmetric radical olefin cyclopropanation via Co(II)-metalloradical catalysis (MRC). Supported by D 2-symmetric chiral amidoporphyrin ligand, Co(II)-based metalloradical system can efficiently activate unsymmetrical methyl phenyl diazomalonate (MPDM) with effective differentiation of the two ester groups for asymmetric cyclopropanation, enabling stereoselective construction of 1,1-cyclopropanediesters bearing two contiguous chiral centers, including all-carbon quaternary stereogenic center. The Co(II)-catalyzed asymmetric cyclopropanation, which operates at room temperature without slow addition of the diazo compound, is generally applicable to broad-ranging olefins and tolerates various functionalities, providing a streamlined synthesis of chiral 1,1-cyclopropanediesters in high yields with both high diastereoselectivity and enantioselectivity. Combined computational and experimental studies support the underlying stepwise radical mechanism for Co(II)-catalyzed cyclopropanation. In addition to functioning as 1,3-dipoles for forming five-membered structures, enantioenriched (E)-1,1-cyclopropanediesters serve as useful building blocks for stereoselective synthesis of different cyclopropane derivatives. In addition, the enantioenriched (E)-1,1-cyclopropanediesters can be stereoselectively converted to (Z)-diastereomers.

7.
J Am Chem Soc ; 144(5): 2368-2378, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099966

RESUMO

α-Alkynyldiazomethanes, generated in situ from the corresponding sulfonyl hydrazones in the presence of a base, can serve as effective metalloradicophiles in Co(II)-based metalloradical catalysis (MRC) for asymmetric cyclopropanation of alkenes. With D2-symmetric chiral amidoporphyrin 2,6-DiMeO-QingPhyrin as the optimal supporting ligand, the Co(II)-based metalloradical system can efficiently activate different α-alkynyldiazomethanes at room temperature for highly asymmetric cyclopropanation of a broad range of alkenes. This catalytic radical process provides a general synthetic tool for stereoselective construction of alkynyl cyclopropanes in high yields with high both diastereoselectivity and enantioselectivity. Combined computational and experimental studies offer several lines of evidence in support of the underlying stepwise radical mechanism for the Co(II)-catalyzed olefin cyclopropanation involving a unique α-metalloradical intermediate that is associated with two resonance forms of α-Co(III)-propargyl radical and γ-Co(III)-allenyl radical. The resulting enantioenriched alkynyl cyclopropanes, as showcased with several stereospecific transformations, may serve as valuable chiral building blocks for stereoselective organic synthesis.


Assuntos
Alcenos/química , Compostos de Diazônio/química , Cobalto , Ciclização , Estrutura Molecular
8.
J Am Chem Soc ; 143(30): 11670-11678, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34292709

RESUMO

While alkyl radicals have been well demonstrated to undergo both 1,5- and 1,6-hydrogen atom abstraction (HAA) reactions, 1,4-HAA is typically a challenging process both entropically and enthalpically. Consequently, chemical transformations based on 1,4-HAA have been scarcely developed. Guided by the general mechanistic principles of metalloradical catalysis (MRC), 1,4-HAA has been successfully incorporated as a key step, followed by 4-exo-tet radical substitution (RS), for the development of a new catalytic radical process that enables asymmetric 1,4-C-H alkylation of diazoketones for stereoselective construction of cyclobutanone structures. The key to success is the optimization of the Co(II)-based metalloradical catalyst through judicious modulation of D2-symmetric chiral amidoporphyrin ligand to adopt proper steric, electronic, and chiral environments that can utilize a network of noncovalent attractive interactions for effective activation of the substrate and subsequent radical intermediates. Supported by an optimal chiral ligand, the Co(II)-based metalloradical system, which operates under mild conditions, is capable of 1,4-C-H alkylation of α-aryldiazoketones with varied electronic and steric properties to construct chiral α,ß-disubstituted cyclobutanones in good to high yields with high diastereoselectivities and enantioselectivities, generating dinitrogen as the only byproduct. Combined computational and experimental studies have shed light on the mechanistic details of the new catalytic radical process, including the revelation of facile 1,4-HAA and 4-exo-tet-RS steps. The resulting enantioenriched α,ß-disubstituted cyclobutanones, as showcased with several enantiospecific transformations to other types of cyclic structures, may find useful applications in stereoselective organic synthesis.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Ciclobutanos/síntese química , Hidrogênio/química , Catálise , Ciclobutanos/química , Radicais Livres/química , Conformação Molecular , Estereoisomerismo
9.
J Am Chem Soc ; 143(29): 11130-11140, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34260202

RESUMO

Radical cascade cyclization reactions are highly attractive synthetic tools for the construction of polycyclic molecules in organic synthesis. While it has been successfully implemented in diastereoselective synthesis of natural products and other complex compounds, radical cascade cyclization faces a major challenge of controlling enantioselectivity. As the first application of metalloradical catalysis (MRC) for controlling enantioselectivity as well as diastereoselectivity in radical cascade cyclization, we herein report the development of a Co(II)-based catalytic system for asymmetric radical bicyclization of 1,6-enynes with diazo compounds. Through the fine-tuning of D2-symmetric chiral amidoporphyrins as the supporting ligands, the Co(II)-catalyzed radical cascade process, which proceeds in a single operation under mild conditions, enables asymmetric construction of multisubstituted cyclopropane-fused tetrahydrofurans bearing three contiguous stereogenic centers, including two all-carbon quaternary centers, in high yields with excellent stereoselectivities. Combined computational and experimental studies have shed light on the underlying stepwise radical mechanism for this new Co(II)-based cascade bicyclization that involves the relay of several Co-supported C-centered radical intermediates, including α-, ß-, γ-, and ε-metalloalkyl radicals. The resulting enantioenriched cyclopropane-fused tetrahydrofurans that contain a trisubstituted vinyl group at the bridgehead, as showcased in several stereospecific transformations, may serve as useful intermediates for stereoselective organic synthesis. The successful demonstration of this new asymmetric radical process via Co(II)-MRC points out a potentially general approach for controlling enantioselectivity as well as diastereoselectivity in synthetically attractive radical cascade reactions.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Ciclização , Radicais Livres/química , Estrutura Molecular , Estereoisomerismo
10.
J Org Chem ; 83(4): 2382-2388, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29333860

RESUMO

2-Aminophenyl-1H-pyrazole has been identified as a viable directing group to promote copper(II)-mediated ortho-selective sp2 C-H bond tandem alkynylation/annulation of anilides with terminal alkynes to offer arylmethylene isoindolinones. Meanwhile, copper(II)-mediated ortho-selective sp2 C-H hydroxylation of anilides has also been optimized as the major reaction pathway by using Cu(OAc)2 as the promoter and 1,1,3,3-tetramethylguanidine as an organic base. Recovery of the directing group was achieved by hydrazinolysis for arylmethylene isoindolinones and basic hydrolysis for the hydroxylation products.

11.
Org Lett ; 18(11): 2660-3, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27172121

RESUMO

2-Aminophenyl-1H-pyrazole was discovered as a removable bidentate directing group for copper-mediated aerobic oxidative C(sp(2)-H) bond amidation and sulfonamidation. When Cu(OAc)2 was employed as the copper source and 1,1,3,3-tetramethylguanidine as an organic base, the reaction, optimally carried out overnight in DMSO at 80 °C in open air, produced a variety of amides and sulfonamides in moderate to excellent yields. This directing group has proven to be particularly efficient in C-H sulfonamidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...