Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Heliyon ; 10(6): e28094, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38532994

RESUMO

Objective: Osteoarthritis (OA), the most prevalent form of arthritis, impacts approximately 10% of men and 18% of women aged above 60 years. Currently, a complete cure for OA remains elusive, making clinical management challenging. The traditional Chinese herb Notopterygium incisum, integral to the Juanbi pill for rheumatism, shows promise in safeguarding chondrocytes through its strong anti-inflammatory effects. Methods: To explore the protective effect of notopterol and miRNA (has-miR-4248) against inflammation, we simulated an inflammatory environment in chondrocytes cell lines C20A4 and C28/12, focusing on inflammasome formation and pyroptosis. Results: Our finding indicates notopterol significantly reduced interleukin (IL)-18 and tumor necrosis factor (TNF)-alpha levels in inflamed cells, curtailed reactive oxygen species (ROS) production post-inflammation, and inhibited the JAK2/STAT3 signaling pathway, thus offering chondrocytes protection from inflammation. Importantly, notopterol also hindered inflammasome assembly and pyroptosis by blocking the NF-κB/NLRP3 pathway through hsa-miR-4282 modulation. In vivo experiments showed that notopterol treatment markedly decreased Osteoarthritis Research Society International (OARSI) scores in OA mice and boosted hsa-miR-4282 expression compared to control groups. Conclusions: This study underscores notopterol's potential as a therapeutic agent in OA treatment, highlighting its capacity to shield cartilage from inflammation-induced damage, particularly by preventing pyroptosis.

2.
Aging (Albany NY) ; 15(20): 11033-11051, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37837551

RESUMO

Growing evidence underscores the circadian rhythm's essential function in liver stability and disease. Its disruption is progressively linked with metabolic issues, oncogene triggers, and heightened cancer susceptibility. Research points to slingshot protein phosphatase 1 (SSH1), a modulator of cofilin-1 (CFL-1), as instrumental in the reformation of the actin cytoskeleton, thereby impacting the invasiveness of various cancer types. Yet, the dynamics of SSH1's influence on liver cell stemness and circadian activity remain unclear. Through in-silico, tissue analysis, and functional assays, the study reveals a significant SSH1 expression in HCC samples, compared to non-cancerous counterparts, across six HCC platforms (AUC between 0.62 and 0.77, p < 0.01). The aberrant expression of SSH1 was correlated with poor patients' survival (HR = 1.70, p = 0.0063) and progression-free (HR = 1.477, p = 0.0187) survival rates. Targeting SSH1, either via Sennoside A or CRISPR SSH1 in Huh7 cells (Huh7-SSH1-/-) significantly suppressed cell viability, migration, invasion, colony and tumorsphere formation of the Huh7-SSH1-/- cells. Mechanistically, we showed that downregulated SSH1 expression suppressed CLOCK, BMAL1, WNT3, ß-catenin, LRP5/6, BCL2, VIM and Snail, with concomitant upregulated CFL-1/2, and CRY1 expression, indicating dysregulated circadian rhythm and WNT/ß-catenin oncogenic pathway deactivation. Treatments in reflected notable tumor size reductions in the mice treated with SenAlight (1.76-fold, p < 0.01) and SenAdark (3.79-fold, p < 0.01). The expression of SSH1, CLOCK, BMAL1 and ß-catenin proteins were significantly downregulated in the SenAlight and SenAdark mice; this was more so in the SenAdark mice. This reveals a potential treatment approach for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/genética , Proteína Fosfatase 1 , beta Catenina , Via de Sinalização Wnt , Fatores de Transcrição ARNTL , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Fosfoproteínas Fosfatases
4.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806043

RESUMO

Osteoarthritis (OA) is most prevalent in older individuals and exerts a heavy social and economic burden. However, an effective and noninvasive approach to OA treatment is currently not available. Chondrocyte senescence has recently been proposed as a key pathogenic mechanism in the etiology of OA. Furthermore, senescent chondrocytes (SnCCs) can release various proinflammatory cytokines, proteolytic enzymes, and other substances known as the senescence-associated secretory phenotype (SASP), allowing them to connect with surrounding cells and induce senesce. Studies have shown that the pharmacological elimination of SnCCs slows the progression of OA and promotes regeneration. Growth differentiation factor 15 (GDF15), a member of the tumor growth factor (TGF) superfamily, has recently been identified as a possible aging biomarker and has been linked to a variety of clinical conditions, including coronary artery disease, diabetes, and multiple cancer types. Thus, we obtained data from a publicly available single-cell sequencing RNA database and observed that GDF15, a critical protein in cellular senescence, is highly expressed in early OA. In addition, GDF15 is implicated in the senescence and modulation of MAPK14 in OA. Tissue and synovial fluid samples obtained from OA patients showed overexpression of GDF15. Next, we treated C20A4 cell lines with interleukin (IL)-1ß with or without shGDF15 then removed the conditioned medium, and cultured C20A4 and HUVEC cell lines with the aforementioned media. We observed that C20A4 cells treated with IL-1ß exhibited increased GDF15 secretion and that chondrocytes cultured with media derived from IL-1ß-treated C20A4 exhibited senescence. HUVEC cell migration and tube formation were enhanced after culturing with IL-1ß-treated chondrocyte media; however, decreased HUVEC cell migration and tube formation were noted in HUVEC cells cultured with GDF15-loss media. We tested the potential of inhibiting GDF15 by using a GDF15 neutralizing antibody, GDF15-nAb. GDF15-nAb exerted a similar effect, resulting in the molecular silencing of GDF15 in vivo and in vitro. Our results reveal that GDF15 is a driver of SnCCs and can contribute to OA progression by inducing angiogenesis.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Osteoartrite , Idoso , Senescência Celular/genética , Condrócitos/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Osteoartrite/metabolismo , Senoterapia
5.
Dis Markers ; 2022: 8446629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903297

RESUMO

Background: Despite therapeutic advancements, metastasis remains a major cause in breast cancer-specific mortality. Breast cancer cells are susceptible to oxidative damage and exhibit high levels of oxidative stress, including protein damage, DNA damage, and lipid peroxidation. Some breast cancer risk factors may change the level of endogenous oxidative stress. Circulating exosomes play critical roles in tumorigenesis, distant metastasis, and poor prognosis in patients with breast cancer. Methods: We used an online database to analyze the expression and prognostic value of core binding factor subunit ß (CBFB) and oxidative stress-related targets in patients with breast cancer. Serum from healthy controls and patients with primary breast cancer or bone metastatic breast cancer in the bone was collected. Exosomes were isolated from the sera or cell culture media. We used an MDA-MB-436-innoculated tumor xenograft mouse model for silencing CBFB. Results: Circulating exosomes from patients with breast cancer metastasis to the bone were rich in CBFB. The human mammary fibroblast cells HMF3A and fibroblasts derived from patient samples cocultured with exosomes had increased α-SMA and vimentin expression and IL-6 and OPN secretion. Similarly, nonmetastatic breast cancer cells cocultured with exosomes exhibited increased levels of certain markers, including vimentin, snail1, CXCR4, and Runx2, and the exosomes had high CBFB expression. Silencing CBFB in metastatic MDA-MB-436 and MDA-MB-157 cells resulted in suppressed migration and invasion and downregulation of vimentin, CXCR4, snail1, Runx2, CD44, and OPN. Conversely, CBFB overexpression resulted in upregulation of Runx2, vimentin, snail1, CD44, and OPN in nonmetastatic T47D and MCF12A cells. The CBFB-rich exosomes derived from MDA-MB-436 cells induced enhanced metastatic phenotypes in the low-metastatic T47D and MCF12A cell lines. Conclusion: Our results revealed that CBFB may promote bone metastasis in patients with breast cancer. Of therapeutic relevance, targeting CBFB resulted in decreased tumor burden and bone metastasis, downregulation of bone metastasis markers, and impaired regulation of oxidative stress-related proteins NAE1 and NOS1.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Feminino , Humanos , Camundongos , Estresse Oxidativo , Fenótipo , Vimentina/genética
6.
Aging (Albany NY) ; 14(12): 5250-5270, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35771152

RESUMO

The exact mechanisms of Head and neck squamous carcinoma (HNSCC) chemoresistance and metastatic transformation remain unclear. In recent decades, members of the transient receptor potential (TRP) channel family have been proposed as potential biomarkers and/or drug targets in cancer treatment. First, in a TCGA cohort of HNSCC, TRPM7 is highly expressed in cancer tissues, especially the expression in invasive cancer tissues is statistically significant (p>0.001). In GEO and TCGA cohort, patients with high expression of TRPM7 and NFATC2 have poor overall survival rates. The expression of TRPM7 and NFATC2 showed a positive correlation. Compared to human normal oral keratinocytes (hNOK), TRPM7 is overexpressed in FaDU, SAS, and TW2.6 cell lines. Similarly, patients with HNSCC exhibited higher TRPM7 expression than non-HNSCC subjects, and this high TRPM7 expression was associated with worse 5-year overall survival. Furthermore, TRPM7 inversely correlated with E-cadherin, but positively correlated with Vimentin, NANOG, and BMI-1 mRNA levels. Consistent with this, we demonstrated the overexpression of TRPM7 in cisplatin-resistant subjects, compared to the cisplatin-sensitive counterparts. Moreover, shRNA-mediated silencing of TRPM7 significantly suppressed the migration, invasion, colony formation, and tumorsphere formation of SAS cells, with associated downregulation of Snail, c-Myc, cyclin D1, SOX2, OCT4, and NANOG proteins expression. Finally, compared with the untreated wild-type SAS cells or cisplatin-treated cells, shTRPM7 alone or in combination with cisplatin significantly inhibited tumorsphere and colony formation. These findings serving as the basis for development of novel therapeutic strategies against metastasis and chemoresistance, while providing new insights into TRPM7 biology and activity in HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Canais de Cátion TRPM , Calcineurina/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Fatores de Transcrição NFATC/metabolismo , Proteínas Serina-Treonina Quinases , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Fatores de Transcrição/metabolismo
7.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163585

RESUMO

BACKGROUND: The treatment of non-small-cell lung cancer (NSCLC) involves platinum-based chemotherapy. It is typically accompanied by chemoresistance resulting from antioxidant properties conferred by cancer stem cells (CSCs). Human epidermal growth factor receptor 2 (HER2) enhances CSCs and antioxidant properties in cancers, including NSCLC. METHODS: Here, we elucidated the role of histamine N-methyltransferase (HNMT), a histamine metabolism enzyme significantly upregulated in NSCLC and coexpressed with HER2. HNMT expression in lung cancer tissues was determined using quantitative reverse transcription PCR (RT-qPCR). A publicly available dataset was used to determine HNMT's potential as an NSCLC target molecule. Immunohistochemistry and coimmunoprecipitation were used to determine HNMT-HER2 correlations and interactions, respectively. HNMT shRNA and overexpression plasmids were used to explore HNMT functions in vitro and in vivo. We also examined miRNAs that may target HNMT and investigated HNMT/HER2's role on NSCLC cells' antioxidant properties. Finally, how HNMT loss affects NSCLC cells' sensitivity to cisplatin was investigated. RESULTS: HNMT was significantly upregulated in human NSCLC tissues, conferred a worse prognosis, and was coexpressed with HER2. HNMT depletion and overexpression respectively decreased and increased cell proliferation, colony formation, tumorsphere formation, and CSCs marker expression. Coimmunoprecipitation analysis indicated that HNMT directly interacts with HER2. TARGETSCAN analysis revealed that HNMT is a miR-223 and miR-3065-5p target. TBHp treatment increased HER2 expression, whereas shHNMT disrupted the Nuclear factor erythroid 2-related factor 2 (Nrf2)/ hemeoxygenase-1 (HO-1)/HER2 axis and increased reactive oxygen species accumulation in NSCLC cells. Finally, shHNMT sensitized H441 cells to cisplatin treatment in vitro and in vivo. CONCLUSIONS: Therefore, HNMT upregulation in NSCLC cells may upregulate HER2 expression, increasing tumorigenicity and chemoresistance through CSCs maintenance and antioxidant properties. This newly discovered regulatory axis may aid in retarding NSCLC progression and chemoresistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histamina N-Metiltransferase/biossíntese , Neoplasias Pulmonares/enzimologia , Células-Tronco Neoplásicas/enzimologia , Estresse Oxidativo , Receptor ErbB-2/metabolismo , Regulação para Cima , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Feminino , Histamina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptor ErbB-2/genética
8.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768921

RESUMO

Background: Oral squamous cell carcinoma (OSCC) has a high prevalence and predicted global mortality rate of 67.1%, necessitating better therapeutic strategies. Moreover, the recurrence and resistance of OSCC after chemo/radioresistance remains a major bottleneck for its effective treatment. Molecular targeting is one of the new therapeutic approaches to target cancer. Among a plethora of targetable signaling molecules, PDK1 is currently rising as a potential target for cancer therapy. Its aberrant expression in many malignancies is observed associated with glycolytic re-programming and chemo/radioresistance. Methods: Furthermore, to better understand the role of PDK1 in OSCC, we analyzed tissue samples from 62 patients with OSCC for PDK1 expression. Combining in silico and in vitro analysis approaches, we determined the important association between PDK1/CD47/LDHA expression in OSCC. Next, we analyzed the effect of PDK1 expression and its connection with OSCC orosphere generation and maintenance, as well as the effect of the combination of the PDK1 inhibitor BX795, cisplatin and radiotherapy in targeting it. Results: Immunohistochemical analysis revealed that higher PDK1 expression is associated with a poor prognosis in OSCC. The immunoprecipitation assay indicated PDK1/CD47 binding. PDK1 ligation significantly impaired OSCC orosphere formation and downregulated Sox2, Oct4, and CD133 expression. The combination of BX795 and cisplatin markedly reduced in OSCC cell's epithelial-mesenchymal transition, implying its synergistic effect. p-PDK1, CD47, Akt, PFKP, PDK3 and LDHA protein expression were significantly reduced, with the strongest inhibition in the combination group. Chemo/radiotherapy together with abrogation of PDK1 inhibits the oncogenic (Akt/CD47) and glycolytic (LDHA/PFKP/PDK3) signaling and, enhanced or sensitizes OSCC to the anticancer drug effect through inducing apoptosis and DNA damage together with metabolic reprogramming. Conclusions: Therefore, the results from our current study may serve as a basis for developing new therapeutic strategies against chemo/radioresistant OSCC.


Assuntos
Cisplatino/farmacologia , Glicólise/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Pirimidinas/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Tiofenos/farmacologia , Adulto , Idoso , Apoptose/efeitos dos fármacos , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Tolerância a Radiação/fisiologia , Transdução de Sinais/efeitos dos fármacos
9.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681754

RESUMO

Osteoarthritis (OA) is a common articular disease manifested by the destruction of cartilage and compromised chondrogenesis in the aging population, with chronic inflammation of synovium, which drives OA progression. Importantly, the activated synovial fibroblast (AF) within the synovium facilitates OA through modulating key molecules, including regulatory microRNAs (miR's). To understand OA associated pathways, in vitro co-culture system, and in vivo papain-induced OA model were applied for this study. The expression of key inflammatory markers both in tissue and blood plasma were examined by qRT-PCR, western blot, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assays. Herein, our result demonstrated, AF-activated human chondrocytes (AC) exhibit elevated NFκB, TNF-α, IL-6, and miR-21 expression as compared to healthy chondrocytes (HC). Importantly, AC induced the apoptosis of HC and inhibited the expression of chondrogenesis inducers, SOX5, TGF-ß1, and GDF-5. NFκB is a key inflammatory transcription factor elevated in OA. Therefore, SC75741 (an NFκB inhibitor) therapeutic effect was explored. SC75741 inhibits inflammatory profile, protects AC-educated HC from apoptosis, and inhibits miR-21 expression, which results in the induced expression of GDF-5, SOX5, TGF-ß1, BMPR2, and COL4A1. Moreover, ectopic miR-21 expression in fibroblast-like activated chondrocytes promoted osteoblast-mediated differentiation of osteoclasts in RW264.7 cells. Interestingly, in vivo study demonstrated SC75741 protective role, in controlling the destruction of the articular joint, through NFκB, TNF-α, IL-6, and miR-21 inhibition, and inducing GDF-5, SOX5, TGF-ß1, BMPR2, and COL4A1 expression. Our study demonstrated the role of NFκB/miR-21 axis in OA progression, and SC75741's therapeutic potential as a small-molecule inhibitor of miR-21/NFκB-driven OA progression.


Assuntos
Benzimidazóis/farmacologia , Condrócitos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Piperidinas/farmacologia , Pirimidinas/farmacologia , Tiazóis/farmacologia , Animais , Benzimidazóis/química , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrócitos/patologia , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Humanos , Interleucina-1beta/farmacologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Osteoartrite/patologia , Piperidinas/química , Pirimidinas/química , Ratos Wistar , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/patologia , Tiazóis/química
10.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34577576

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with a median duration of survival of approximately 14 months after diagnosis. High resistance to chemotherapy remains a major problem. Previously, BTK has been shown to be involved in the intracellular signal transduction including Akt/mTOR signaling and be critical for tumorigenesis. Thus, we aim to evaluate the effect of BTK and mTOR inhibition in GBM. We evaluated the viability of GBM cell lines after treatment with acalabrutinib and/or rapamycin through a SRB staining assay. We then evaluated the effect of both drugs on GBM stem cell-like phenotypes through various in vitro assay. Furthermore, we incubated HUVEC cells with tumorsphere conditioned media and observed their angiogenesis potential, with or without treatment. Finally, we conducted an in vivo study to confirm our in vitro findings and analyzed the effect of this combination on xenograft mice models. Drug combination assay demonstrated a synergistic relationship between acalabrutinib and rapamycin. CSCs phenotypes, including tumorsphere and colony formation with the associated expression of markers of pluripotency are inhibited by either acalabrutinib or rapamycin singly and these effects are enhanced upon combining acalabrutinib and rapamycin. We showed that the angiogenesis capabilities of HUVEC cells are significantly reduced after treatment with acalabrutinib and/or rapamycin. Xenograft tumors treated with both drugs showed significant volume reduction with minimal toxicity. Samples taken from the combined treatment group demonstrated an increased Desmin/CD31 and col IV/vessel ratio, suggesting an increased rate of vascular normalization. Our results demonstrate that BTK-mTOR inhibition disrupts the population of GBM-CSCs and contributes to normalizing GBM vascularization and thus, may serve as a basis for developing therapeutic strategies for chemoresistant/radioresistant GBM.

11.
Oxid Med Cell Longev ; 2021: 9959807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336125

RESUMO

BACKGROUND: Treating advanced colon cancer remains challenging in clinical settings because of the development of drug resistance and distant metastasis. Mechanisms underlying the metastasis of colon cancer are complex and unclear. METHODS: Computational analysis was performed to determine genes associated with the exosomal long noncoding (lncRNA) plasmacytoma variant translocation 1 (PVT1)/vascular endothelial growth factor A (VEGFA) axis in patients with colon cancer. The biological importance of the exosomal lncRNA PVT1/VEGFA axis was examined in vitro by using HCT116 and LoVo cell lines and in vivo by using a patient-derived xenograft (PDX) mouse model through knockdown (by silencing of PVT1) and overexpression (by adding serum exosomes isolated from patients with distant metastasis (M-exo)). RESULTS: The in silico analysis demonstrated that PVT1 overexpression was associated with poor prognosis and increased expression of metastatic markers such as VEGFA and epidermal growth factor receptor (EGFR). This finding was further validated in a small cohort of patients with colon cancer in whom increased PVT1 expression was correlated with colon cancer incidence, disease recurrence, and distant metastasis. M-exo were enriched with PVT1 and VEGFA, and both migratory and invasive abilities of colon cancer cell lines increased when they were cocultured with M-exo. The metastasis-promoting effect was accompanied by increased expression of Twist1, vimentin, and MMP2. M-exo promoted metastasis in PDX mice. In vitro silencing of PVT1 reduced colon tumorigenic properties including migratory, invasive, colony forming, and tumorsphere generation abilities. Further analysis revealed that PVT1, VEGFA, and EGFR interact with and are regulated by miR-152-3p. Increased miR-152-3p expression reduced tumorigenesis, where increased tumorigenesis was observed when miR-152-3p expression was downregulated. CONCLUSION: Exosomal PVT1 promotes colon cancer metastasis through its association with EGFR and VEGFA expression. miR-152-3p targets both PVT1 and VEGFA, and this regulatory pathway can be explored for drug development and as a prognostic biomarker.


Assuntos
Neoplasias do Colo/genética , Exossomos/metabolismo , Genes Supressores de Tumor/fisiologia , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Progressão da Doença , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Transdução de Sinais , Transfecção
12.
Cancers (Basel) ; 13(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203465

RESUMO

Sorafenib is used for treating advanced hepatocellular carcinoma (HCC), but some patients acquire sorafenib resistance. We investigated the mechanisms underlying acquired sorafenib resistance in HCC cells and targeted them to re-sensitize them to sorafenib. In silico analysis indicated that toll-like receptor (TLR)-9 was significantly overexpressed, and that miRNA (hsa-miR-30a-5p) was downregulated in sorafenib-resistant HCC cells, which modulated HCC cell proliferation, oxidative stress, and apoptosis. TLR9 overexpression increased HCC cell proliferation, whereas TLR9 inhibition from hydroxychloroquine (HCQ) decreased HCC cell proliferation, tumor growth, oxidative stress marker (SOD1), and the formation of autophagosome bodies (reduced ATG5 and Beclin-1 expression). Moreover, HCQ treatment reduced epithelial-mesenchymal transition, leading to decreased clonogenicity, migratory ability, and invasiveness. HCQ targeted and reduced the self-renewal capacity phenotype by inhibiting tumorsphere generation. Both in vitro and in vivo results demonstrated the synergistic effect of the HCQ-sorafenib combination on sorafenib-resistant HCC (Huh7-SR) cells, increasing their sensitivity to treatment by modulating TLR9, autophagy (ATG5 and Beclin-1), oxidative stress (SOD1), and apoptosis (c-caspase3) expression and thus overcoming the drug resistance. This study's findings indicate that TLR9 overexpression occurs in sorafenib-resistant HCC cells and that its downregulation aids HCC suppression. Moreover, HCQ treatment significantly increases sorafenib's effect on sorafenib-resistant HCC cells.

13.
Cancers (Basel) ; 13(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199353

RESUMO

BACKGROUND: Hepatitis virus is a major risk factor for liver cancer. The mitochondrial dysfunction IFN gamma-related pathways are activated after virus infection. Jak family-related protein is involved in the downstream of IFN gamma-related pathways. However, the effect of the IFNGR-JAK-STAT pathway acting as functional regulators of their related protein expression on virus infection and hepatocellular carcinoma (HCC) remains unclear. Interestingly, the role of the DNA repair gene (PARP1) in therapy resistant cancers also has not been studied and explored well. In this study, we hypothesized that momelotinib could suppress the progression of HCC by targeting Jak family related and PARP1 DNA repair protein. Based on this observation, we link the relevant targets of the JAK family and the potential applications of targeted therapy inhibitors. METHODS: We analyzed possible synergism between momelotinib and sorafenib in hepatitis virus-associated liver cancer. Immunostaining, colony formation assay, cell invasion, migration, and tumorsphere-formation assay were used for drug cytotoxicity, cell viability, and possible molecular mechanism. RESULT: We first demonstrated that the expression of Jak1 and 2 is significantly upregulated in vHCC than in nvHCC/normal liver tissues. In addition, the gene expression of IFN gamma-related pathways is activated after virus infection. Additionally, we found that momelotinib significantly inhibited the growth of HCC cells and reduces the expression of Jak2, which showed the importance of momelotinib in targeting Jak2 and reducing tumorigenesis in HCC. Meanwhile, momelotinib effectively inhibited the IFNGR-JAK-STAT pathway and reduced the migratory/invasive ability of vHCC cells through down-regulating EMT biomarkers (E-cadherin and vimentin), transcription factor (Slug), and significantly inhibits the DNA damage repair enzyme PARP1. It also induced cell apoptosis of vHCC cells. Furthermore, the combined effect of momelotinib and sorafenib both at in vitro and in vivo synergistically suppresses the proliferation of vHCC cells and effectively reduces the tumor burden. CONCLUSIONS: Our results showed that momelotinib effectively suppressed the expression of the IFNGR-JAK-STAT-PARP1 pathway, which results in the downregulation of cancer stem cell genes and enhances the antitumor efficacy of sorafenib by initiating the expression of apoptosis-related genes and inhibiting the DNA repair gene in vHCC cells, thus maximizing its therapeutic potential for patients with HCC.

14.
Bone ; 151: 116024, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34052462

RESUMO

BACKGROUND: Osteoarthritis (OA), a common articular bone degenerative disease, is exacerbated by proinflammatory cytokine signaling. Mounting evidence suggests that epigenetic modifiers, namely microRNAs (miRs), are dysregulated in articular chondrocytes (ACs) during OA. METHODS: An initial database search led to the identification of miR-149-5p, which was downregulated in clinical OA samples and contributed to chronic inflammation, by increasing TNF-α/IL-6 signaling within the synovium, and OA progression. RESULTS: We overexpressed miR-149-5p in the human chondrocyte cell lines C20A4 and C28/I2 to examine its role in chondrocyte hypertrophy and osteoclastogenesis and found a significant decrease in IL-6 expression, an increase in SOX9 expression, and a reduction in chondrocyte hypertrophy. We evaluated the therapeutic effects of tofacitinib (JAK inhibitor) by suppressing inflammation and restoring miR-149-5p expression. Tofacitinib-treated C20A4 and C28/I2 cells had a significantly lower expression of JAK/IL-6/TNF-α and an increased level of miR-149-5p. Notably, tofacitinib treatment reduced AC hypertrophy and secretion of RANKL and IL-6. Finally, an OA mouse model was used to evaluate the therapeutic potential of tofacitinib. Intra-articular injection of tofacitinib significantly lowered arthritis scores and bone degradation in treated mice compared with their control counterparts. CONCLUSION: We show for the first time that tofacitinib suppresses the expression level of JAK1/TNF-α/IL-6 by upregulating miR-149-5p level. Our findings revealed the functional association between proinflammatory JAK1/TNF-α/IL-6 signaling and ACs development and highlight the therapeutic potential of tofacitinib in OA.


Assuntos
Inibidores de Janus Quinases , MicroRNAs , Osteoartrite , Animais , Condrócitos , Interleucina-6 , Janus Quinase 1 , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Camundongos , MicroRNAs/genética , Osteoartrite/tratamento farmacológico , Piperidinas , Pirimidinas , Fator de Necrose Tumoral alfa
15.
Cancers (Basel) ; 13(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807449

RESUMO

This study investigated the epidemiological and clinical peculiarities of BCL2 and BCL6 rearrangement in patients with high grade B-cell lymphoma (HGBL) from Taiwan, compared with data from Western countries. Two hundred and eighty-two DLBCL cases from Taipei Medical University-affiliated hospitals (n = 179) and Tri-Service General Hospital (n = 103) were enrolled for this study. From the 282, 47 (16.7%) had MYC translocation; 24 of these harbored concurrent BCL2 and/or BCL6 translocation (double-hit, DH or triple-hit, TH). Twelve DH-HGBL cases had simultaneous MYC and BCL6 translocations, 8 harbored MYC and BCL2 rearrangement, while the remaining 4 patients exhibited TH. Together, 66.7% of DH/TH-HGBL patients were BCL6 rearrangement positive. Among these BCL6-rearranged DH/TH-HGBL patients, only 6 (37.5%) overexpressed MYC and BCL6 proteins simultaneously, indicating that MYC-BCL6 co-overexpression may not be plausible surrogate biomarker for screening BCL6-rearranged DH-HGBL. By the end of year 5, all patients with TH-HGBL, BCL2 DH-HGBL and all but one BCL6 DH-HGBL cases had expired or were lost to follow-up. Progression-free survival (PFS) was longer for the non-DH/TH-HGBL group compared with the DH/TH-HGBL group. While the patients with BCL2 DH-HGBL were lost to follow-up by day 800, their remaining TH-HGBL and BCL6 DH-HGBL peers exhibited very poor PFS, regardless of age strata. More so, patients with BCL6 rearrangement were 5.5-fold more likely associated with extranodal involvement compared with their BCL2-rearranged peers. Moreover, ~60.0% of the BCL6-rearranged DH-HGBL cases were non-GCB, suggesting that including screening for BCL6 rearrangement in patients with the non-GCB phenotype may aid medical decision-making and therapeutic strategy. Contrary to contemporary data from western countries, 2 in every 3 patients with DH/TH-HGBL in Taiwan harbor BCL6 rearrangement. Consistent with present findings, we recommend mandatory screening for BCL6 rearrangement in patients with aggressive HGBL in Taiwan.

16.
Oncogenesis ; 10(2): 20, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33640903

RESUMO

Locally advanced oral squamous cell carcinoma (OSCC) requires multimodal therapy, including surgery and concurrent chemoradiotherapy (CCRT). CCRT-resistant and recurrent cancer has a poor prognosis. We investigated the effects of Bruton's tyrosine kinase (BTK) on CCRT-resistant OSCC tissues. The effect of ibrutinib, a first-in-class BTK inhibitor, was tested on stem cell-like OSCC tumorspheres. A tissue array was constructed using tissue samples from 70 patients with OSCC. Human OSCC cell lines, SAS, TW2.6 and HSC-3, were examined. Wound healing, Matrigel invasion, and tumorsphere formation assays, as well as immunofluorescence analysis and flow cytometry, were used to investigate the effects of BTK knockdown (shBTK), ibrutinib, cisplatin, and ibrutinib/cisplatin combination on OSCC cells. We demonstrated that BTK was aberrantly highly expressed in the clinical CCRT-resistant OSCC tissue array, which resulted in poor overall survival in our local Tri-Service General Hospital and freely accessible TCGA OSCC cohorts. shBTK significantly downregulated the stemness markers Nanog, CD133, T cell immunoglobulin-3 (TIM-3), and Krüppel-like factor 4 (KLF4) in SAS tumorspheres and attenuated OSCC cell migration and colony formation. Ibrutinib reduced the number of aldehyde dehydrogenase (ALDH)-rich OSCC cells and reduced tumorsphere formation, migration, and invasion in a dose-dependent manner. Compared with ibrutinib or cisplatin monotherapy, the ibrutinib/cisplatin combination significantly reduced the formation of ALDH + OSCC tumorspheres and enhanced apoptosis. These results demonstrate that ibrutinib effectively inhibits the CSCs-like phenotype of OSCC cells through dysregulation of BTK/CD133 signaling. The ibrutinib/cisplatin combination may be considered for future clinical use.

17.
Cells ; 10(1)2021 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477333

RESUMO

Hepatocellular carcinoma (HCC) is one of the most diagnosed malignancies and a leading cause of cancer-related mortality globally. This is exacerbated by its highly aggressive phenotype, and limitation in early diagnosis and effective therapies. The SUMO-activating enzyme subunit 1 (SAE1) is a component of a heterodimeric small ubiquitin-related modifier that plays a vital role in SUMOylation, a post-translational modification involving in cellular events such as regulation of transcription, cell cycle and apoptosis. Reported overexpression of SAE1 in glioma in a stage-dependent manner suggests it has a probable role in cancer initiation and progression. In this study, hypothesizing that SAE1 is implicated in HCC metastatic phenotype and poor prognosis, we analyzed the expression of SAE1 in several cancer databases and to unravel the underlying molecular mechanism of SAE1-associated hepatocarcinogenesis. Here, we demonstrated that SAE1 is over-expressed in HCC samples compared to normal liver tissue, and this observed SAE1 overexpression is stage and grade-dependent and associated with poor survival. The receiver operating characteristic analysis of SAE1 in TCGA-LIHC patients (n = 421) showed an AUC of 0.925, indicating an excellent diagnostic value of SAE1 in HCC. Our protein-protein interaction analysis for SAE1 showed that SAE1 interacted with and activated oncogenes such as PLK1, CCNB1, CDK4 and CDK1, while simultaneously inhibiting tumor suppressors including PDK4, KLF9, FOXO1 and ALDH2. Immunohistochemical staining and clinicopathological correlate analysis of SAE1 in our TMU-SHH HCC cohort (n = 54) further validated the overexpression of SAE1 in cancerous liver tissues compared with 'normal' paracancerous tissue, and high SAE1 expression was strongly correlated with metastasis and disease progression. The oncogenic effect of upregulated SAE1 is associated with dysregulated cancer metabolic signaling. In conclusion, the present study demonstrates that SAE1 is a targetable cancer metabolic biomarker with high potential diagnostic and prognostic implications for patients with HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Proteínas de Neoplasias/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Neoplasias/genética , Enzimas Ativadoras de Ubiquitina/genética
18.
BMC Neurol ; 20(1): 178, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393192

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is one of the most aggressive malignant brain tumors. Intracranial GBM metastases to the spine are rarely detected clinically. Secondary gliosarcomas after treatment of primary GBM are rarely described. CASE PRESENTATION: Herein, we report the case of a 53-year-old woman who presented to our emergency room with progressive headache and weakness on the left side. Plain computed tomography and contrast magnetic resonance imaging of the brain revealed an approximately 6.8 cm × 4.5 cm right temporoparietooccipital intraaxial cystic tumor with surrounding diffuse perifocal edema that caused midline shift toward the left. Emergency craniotomy was performed to remove the tumor, and pathological examination revealed GBM. The patient received proton beam therapy, Gliadel implantation, and oral temozolomide chemotherapy as well as targeted therapy with bevacizumab. Approximately 15 months after diagnosis, she underwent surgical resection of the right temporal recurrent tumor and was newly diagnosed as having a metastatic spinal tumor. Pathologically, the right temporal and metastatic spinal tumors were gliosarcoma and GBM, respectively. CONCLUSIONS: Concurrent spinal metastasis and gliosarcomatous transformation, which are two types of GBM complications, are rare. To our knowledge, this is the first report of a case of recurrent GBM with gliosarcoma after proton bean therapy.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Glioblastoma/secundário , Gliossarcoma/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias da Coluna Vertebral/secundário , Antineoplásicos Alquilantes/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Craniotomia , Evolução Fatal , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/terapia , Terapia com Prótons , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/cirurgia , Temozolomida/uso terapêutico , Tomografia Computadorizada por Raios X
19.
Cells ; 9(4)2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326045

RESUMO

BACKGROUND: With recorded under-performance of current standard therapeutic strategies as highlighted by high rates of post-treatment (resection or local ablation) recurrence, resistance to chemotherapy, poor overall survival, and an increasing global incidence, hepatocellular carcinoma (HCC) constitutes a medical challenge. Accumulating evidence implicates the presence of HCC stem cells (HCC-SCs) in HCC development, drug-resistance, recurrence, and progression. Therefore, treatment strategies targeting both HCC-SCs and non-CSCs are essential. METHODS: Recently, there has been an increasing suggestion of MALAT1 oncogenic activity in HCC; however, its role in HCC stemness remains unexplored. Herein, we investigated the probable role of MALAT1 in the SCs-like phenotype of HCC and explored likely molecular mechanisms by which MALAT1 modulates HCC-SCs-like and metastatic phenotypes. RESULTS: We showed that relative to normal, cirrhotic, or dysplastic liver conditions, MALAT1 was aberrantly expressed in HCC, similar to its overexpression in Huh7, Mahlavu, and SK-Hep1 HCC cells lines, compared to the normal liver cell line THLE-2. We also demonstrated a positive correlation between MALAT1 expression and poor cell differentiation status in HCC using RNAscope. Interestingly, we demonstrated that shRNA-mediated silencing of MALAT1 concomitantly downregulated the expression levels of ß-catenin, Stat3, c-Myc, CK19, vimentin, and Twist1 proteins, inhibited HCC oncogenicity, and significantly suppressed the HCC-SCs-related dye-effluxing potential of HCC cells and reduced their ALDH-1 activity, partially due to inhibited MALAT1-ß-catenin interaction. Additionally, using TOP/FOP (TCL/LEF-Firefly luciferase) Flash, RT-PCR, and western blot assays, we showed that silencing MALAT1 downregulates ß-catenin expression, dysregulates the canonical Wnt signaling pathway, and consequently attenuates HCC tumorsphere formation efficiency, with concurrent reduction in CD133+ and CD90+ HCC cell population, and inhibits tumor growth in SK-Hep1-bearing mice. Conclusions: Taken together, our data indicate that MALAT1/Wnt is a targetable molecular candidate, and the therapeutic targeting of MALAT1/Wnt may constitute a novel promising anticancer strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular/genética , RNA Longo não Codificante/genética , Via de Sinalização Wnt/genética , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Longo não Codificante/metabolismo
20.
Cells ; 9(4)2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276472

RESUMO

The role and therapeutic promise of poly-ADP ribose polymerase (PARP) inhibitors in anticancer chemotherapy are increasingly being explored, particularly in adjuvant or maintenance therapy, considering their low efficacy as monotherapy agents and their potentiating effects on concurrently administered contemporary chemotherapeutics. Against the background of increasing acquired resistance to FGFR1 inhibitors and our previous work, which partially demonstrated the caspase-3/PARP-mediated antitumor and antimetastatic efficacy of PD173074, a selective FGFR1 inhibitor, against ALDH-high/FGFR1-rich pancreatic ductal adenocarcinoma (PDAC) cells, we investigated the probable synthetic lethality and therapeutic efficacy of targeted PARP inhibition combined with FGFR1 blockade in patients with PDAC. Using bioinformatics-based analyses of gene expression profiles, co-occurrence and mutual exclusivity, molecular docking, immunofluorescence staining, clonogenicity, Western blotting, cell viability or cytotoxicity screening, and tumorsphere formation assays, we demonstrated that FGFR1 and PARP co-occur, form a complex, and reduce survival in patients with PDAC. Furthermore, FGFR1 and PARP expression was upregulated in FGFR1 inhibitor (dasatinib)-resistant PDAC cell lines SU8686, MiaPaCa2, and PANC-1 compared with that in sensitive cell lines Panc0403, Panc0504, Panc1005, and SUIT-2. Compared with the limited effect of single-agent olaparib (PARP inhibitor) or PD173074 on PANC-1 and SUIT-2 cells, low-dose combination (olaparib + PD173074) treatment significantly, dose-dependently, and synergistically reduced cell viability, upregulated cleaved PARP, pro-caspase (CASP)-9, cleaved-CASP9, and cleaved-CASP3 protein expression, and downregulated Bcl-xL protein expression. Furthermore, combination treatment markedly suppressed the clonogenicity and tumorsphere formation efficiency of PDAC cells regardless of FGFR1 inhibitor-resistance status and enhanced RAD51 and γ-H2AX immunoreactivity. In vivo studies have shown that both early and late initiation of combination therapy markedly suppressed tumor xenograft growth and increase in weight, although the effect was more pronounced in the early initiation group. In conclusion, FGFR1 inhibitor-resistant PDAC cells exhibited sensitivity to PD173074 after olaparib-mediated loss of PARP signaling. The present FGFR1/PARP-mediated synthetic lethality proof-of-concept study provided preclinical evidence of the feasibility and therapeutic efficacy of combinatorial FGFR1/PARP1 inhibition in human PDAC cell lines.


Assuntos
Neoplasias Pancreáticas/terapia , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Pirimidinas/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Pirimidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...