Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832451

RESUMO

In this study, high-strength concrete containing hooked-end steel or amorphous metallic fibers was fabricated, and the electrical conductivity and electromagnetic shielding effectiveness were evaluated after 28 and 208 days based on considerations of the influences of the moisture content. Amorphous metallic fibers, which have the same length and length/equivalent diameter ratio as hooked-end steel fibers, were favored for the formation of a conductive network because they can be added in large quantities owing to their low densities. These fibers have a large specific surface area as thin plates. The electromagnetic shielding effectiveness clearly improved as the electrical conductivity increased, and it can be expected that the shielding effectiveness will approach the saturation level when the fiber volume fraction of amorphous metallic fibers exceeds 0.5 vol.%. Meanwhile, it is necessary to reduce the amount of moisture to conservatively evaluate the electromagnetic shielding performance. In particular, when 0.5 vol.% of amorphous metallic fibers was added, a shielding effectiveness of >80 dB (based on a thickness of 300 mm) was achieved at a low moisture content after 208 days. Similar to the electrical conductivity, excellent shielding effectiveness can be expected from amorphous metallic fibers at low contents compared to that provided by hooked-end steel fibers.

2.
Materials (Basel) ; 14(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443026

RESUMO

In this study, a high-performance hybrid fiber-reinforced cementitious composite (HP-HFRCC) was prepared, by mixing hooked steel fiber (HSF) and smooth steel fiber (SSF) at different blending ratios, to evaluate the synergistic effect of the blending ratio between HSF and SSF and the strain rate on the tensile properties of HP-HFRCC. The experimental results showed that the micro- and macrocrack control capacities of HP-HFRCC varied depending on the blending ratio and strain rate, and the requirement for deriving the appropriate blending ratio was confirmed. Among the HP-HFRCC specimens, the specimen mixed with HSF 1.0 vol.% and SSF 1.0 vol.% (H1.0S1.0) exhibited a significant increase in the synergistic effect on the tensile properties at the high strain rate, as SSF controlled the microcracks and HSF controlled the macrocracks. Consequently, it exhibited the highest strain rate sensitivities of tensile strength, strain capacity, and peak toughness among the specimens evaluated in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...