Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(6): 1542-1556, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38192269

RESUMO

Cancer metastasis, the leading cause of cancer-related deaths, remains a complex challenge in medical science. Stephen Paget's "seed and soil theory" introduced the concept of organotropism, suggesting that metastatic success depends on specific organ microenvironments. Understanding organotropism not only offers potential for curbing metastasis but also novel treatment strategies. Microphysiological systems (MPS), especially organ-on-a-chip models, have emerged as transformative tools in this quest. These systems, blending microfluidics, biology, and engineering, grant precise control over cell interactions within organ-specific microenvironments. MPS enable real-time monitoring, morphological analysis, and protein quantification, enhancing our comprehension of cancer dynamics, including tumor migration, vascularization, and pre-metastatic niches. In this review, we explore innovative applications of MPS in investigating cancer metastasis, particularly focusing on organotropism. This interdisciplinary approach converges the field of science, engineering, and medicine, thereby illuminating a path toward groundbreaking discoveries in cancer research.


Assuntos
Sistemas Microfisiológicos , Neoplasias , Humanos , Microfluídica , Comunicação Celular , Metástase Neoplásica , Microambiente Tumoral
2.
Sci Adv ; 8(43): eadd0185, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306364

RESUMO

Cryopreservation of cells is essential for the conservation and cold chain of bioproducts and cell-based medicines. Here, we demonstrate that self-assembled DNA origami nanostructures have a substantial ability to protect cells undergoing freeze-thaw cycles; thereby, they can be used as cryoprotectant agents, because their nanoscale morphology and ice-philicity are tailored. In particular, a single-layered DNA origami nanopatch functionalized with antifreezing threonine peptides enabled the viability of HSC-3 cells to reach 56% after 1 month of cryopreservation, surpassing dimethyl sulfoxide, which produced 38% viability. It also exhibited minimal dependence on the cryopreservation period and freezing conditions. We attribute this outcome to the fact that the peptide-functionalized DNA nanopatches exert multisite actions for the retardation of ice growth in both intra- and extracellular regions and the protection of cell membranes during cryopreservation. This discovery is expected to deepen our fundamental understanding of cell survival under freezing environment and affect current cryopreservation technologies.


Assuntos
Crioprotetores , Gelo , Crioprotetores/farmacologia , Criopreservação , Congelamento , Sobrevivência Celular , Peptídeos/farmacologia , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...