Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 54(8): 1169-79, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26358241

RESUMO

Respiration detection using microwave Doppler radar has attracted significant interest primarily due to its unobtrusive form of measurement. With less preparation in comparison with attaching physical sensors on the body or wearing special clothing, Doppler radar for respiration detection and monitoring is particularly useful for long-term monitoring applications such as sleep studies (i.e. sleep apnoea, SIDS). However, motion artefacts and interference from multiple sources limit the widespread use and the scope of potential applications of this technique. Utilising the recent advances in independent component analysis (ICA) and multiple antenna configuration schemes, this work investigates the feasibility of decomposing respiratory signatures into each subject from the Doppler-based measurements. Experimental results demonstrated that FastICA is capable of separating two distinct respiratory signatures from two subjects adjacent to each other even in the presence of apnoea. In each test scenario, the separated respiratory patterns correlate closely to the reference respiration strap readings. The effectiveness of FastICA in dealing with the mixed Doppler radar respiration signals confirms its applicability in healthcare applications, especially in long-term home-based monitoring as it usually involves at least two people in the same environment (i.e. two people sleeping next to each other). Further, the use of FastICA to separate involuntary movements such as the arm swing from the respiratory signatures of a single subject was explored in a multiple antenna environment. The separated respiratory signal indeed demonstrated a high correlation with the measurements made by a respiratory strap used currently in clinical settings.


Assuntos
Monitorização Fisiológica/instrumentação , Tecnologia de Sensoriamento Remoto/instrumentação , Respiração , Processamento de Sinais Assistido por Computador , Algoritmos , Desenho de Equipamento , Humanos , Micro-Ondas , Radar
2.
IEEE J Transl Eng Health Med ; 2: 1800912, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27170871

RESUMO

Noncontact detection characteristic of Doppler radar provides an unobtrusive means of respiration detection and monitoring. This avoids additional preparations, such as physical sensor attachment or special clothing, which can be useful for certain healthcare applications. Furthermore, robustness of Doppler radar against environmental factors, such as light, ambient temperature, interference from other signals occupying the same bandwidth, fading effects, reduce environmental constraints and strengthens the possibility of employing Doppler radar in long-term respiration detection, and monitoring applications such as sleep studies. This paper presents an evaluation in the of use of microwave Doppler radar for capturing different dynamics of breathing patterns in addition to the respiration rate. Although finding the respiration rate is essential, identifying abnormal breathing patterns in real-time could be used to gain further insights into respiratory disorders and refine diagnostic procedures. Several known breathing disorders were professionally role played and captured in a real-time laboratory environment using a noncontact Doppler radar to evaluate the feasibility of this noncontact form of measurement in capturing breathing patterns under different conditions associated with certain breathing disorders. In addition to that, inhalation and exhalation flow patterns under different breathing scenarios were investigated to further support the feasibility of Doppler radar to accurately estimate the tidal volume. The results obtained for both experiments were compared with the gold standard measurement schemes, such as respiration belt and spirometry readings, yielding significant correlations with the Doppler radar-based information. In summary, Doppler radar is highlighted as an alternative approach not only for determining respiration rates, but also for identifying breathing patterns and tidal volumes as a preferred nonwearable alternative to the conventional contact sensing methods.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25570029

RESUMO

This paper further the investigation of Doppler radar feasibility in measuring the flow in and out due to inhalation and exhalation under different conditions of breathing activities. Three different experiment conditions were designed to investigate the feasibility and consistency of Doppler radar which includes the combination of the states of normal breathing, deep breathing and apnoea state were demonstrated. The obtained Doppler radar signals were correlated and compared with the gold standard medical device, spirometer, yielding a good correlations between both devices. We also demonstrated the calibration of the Doppler radar signal can be performed in a simple manner in order to have a good agreements with the spirometer readings. The measurement of the flow in and out during the breathing activities can be measured accurately under different dynamics of breathing as long as the calibration is performed correctly.


Assuntos
Respiração , Testes de Função Respiratória/métodos , Volume de Ventilação Pulmonar/fisiologia , Apneia/fisiopatologia , Calibragem , Efeito Doppler , Expiração , Humanos , Radar , Testes de Função Respiratória/instrumentação , Processamento de Sinais Assistido por Computador , Espirometria/instrumentação
4.
Artigo em Inglês | MEDLINE | ID: mdl-24110567

RESUMO

This paper further investigates the use of Doppler radar for detecting and identifying certain human respiratory characteristics from observed frequency and phase modulations. Specifically, we show how breathing frequencies can be determined from the demodulated signal leading to identifying abnormalities of breathing patterns using signal derivatives, optimal filtering and standard statistical measures. Specifically, we report results on a robust method for distinguishing cessation of the normal breathing cycle. The proposed approach can have potential application in the management of sudden infant death syndrome(SIDS) and sleep apnea.


Assuntos
Ecocardiografia Doppler , Morte Súbita do Lactente/prevenção & controle , Algoritmos , Eletrocardiografia Ambulatorial , Humanos , Lactente , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...