Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Perinatol ; 47(3): 151725, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37031035

RESUMO

Congenital heart disease remains one of the most frequently diagnosed congenital diseases of the newborn, with hypoplastic left heart syndrome (HLHS) being considered one of the most severe. This univentricular defect was uniformly fatal until the introduction, 40 years ago, of a complex surgical palliation consisting of multiple staged procedures spanning the first 4 years of the child's life. While survival has improved substantially, particularly in experienced centers, ventricular failure requiring heart transplant and a number of associated morbidities remain ongoing clinical challenges for these patients. Cell-based therapies aimed at boosting ventricular performance are under clinical evaluation as a novel intervention to decrease morbidity associated with surgical palliation. In this review, we will examine the current burden of HLHS and current modalities for treatment, discuss various cells therapies as an intervention while delineating challenges and future directions for this therapy for HLHS and other congenital heart diseases.


Assuntos
Insuficiência Cardíaca , Síndrome do Coração Esquerdo Hipoplásico , Recém-Nascido , Criança , Humanos , Síndrome do Coração Esquerdo Hipoplásico/cirurgia , Função Ventricular Direita , Estudos Retrospectivos
2.
Front Cell Neurosci ; 16: 929593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966198

RESUMO

Objective: To systematically evaluate the literature on the therapeutic use of Schwann cells (SC) in the repair of peripheral nerve injuries. Methods: The Cochrane Library and PubMed databases were searched using terms [("peripheral nerve injury" AND "Schwann cell" AND "regeneration") OR ("peripheral nerve injuries")]. Studies published from 2008 to 2022 were eligible for inclusion in the present study. Only studies presenting data from in-vivo investigations utilizing SCs in the repair of peripheral nerve injuries qualified for review. Studies attempting repair of a gap of ≥10 mm were included. Lastly, studies needed to have some measure of quantifiable regenerative outcome data such as histomorphometry, immunohistochemical, electrophysiology, or other functional outcomes. Results: A search of the PubMed and Cochrane databases revealed 328 studies. After screening using the abstracts and methods, 17 studies were found to meet our inclusion criteria. Good SC adherence and survival in conduit tubes across various studies was observed. Improvement in morphological and functional outcomes with the use of SCs in long gap peripheral nerve injuries was observed in nearly all studies. Conclusion: Based on contemporary literature, SCs have demonstrated clear potential in the repair of peripheral nerve injury in animal studies. It has yet to be determined which nerve conduit or graft will prove superior for delivery and retention of SCs for nerve regeneration. Recent developments in isolation and culturing techniques will enable further translational utilization of SCs in future clinical trials.

3.
Front Cell Neurosci ; 16: 929494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846565

RESUMO

Peripheral nerve injury (PNI) is found in a relatively large portion of trauma patients. If the injury is severe, such as with the presence of a long segmental gap, PNI can present a challenge for treatment. The current clinical standard of nerve harvest for the repair of long segmental gap PNI can lead to many potential complications. While other methods have been utilized, recent evidence indicates the relevance of cell therapies, particularly through the use of Schwann cells, for the treatment of PNI. Schwann cells (SCs) are integral in the regeneration and restoration of function following PNI. SCs are able to dedifferentiate and proliferate, remove myelin and axonal debris, and are supportive in axonal regeneration. Our laboratory has demonstrated that SCs are effective in the treatment of severe PNI when axon guidance channels are utilized. However, in order for this treatment to be effective, optimal techniques for cellular placement must be used. Thus, here we provide relevant background information, preclinical, and clinical evidence for our method in the treatment of severe PNI through the use of SCs and axon guidance channels.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35112111

RESUMO

INTRODUCTION: Cardiovascular disease and myocardial infarction are leading causes of morbidity and mortality in aged populations. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are under evaluation as a therapeutic option for the treatment of myocardial infarction. AIM: This study aimed to develop a large-scale manufacturing procedure to harvest clinical-grade EVs required for the translation of EVs to the clinic. METHODS AND RESULTS: We compared the efficiency of large scale MSC-derived EV production and characterized EV miRNA cargo using the Quantum bioreactor with either fetal bovine serum or human platelet lysate (PLT)-containing expansion media. We tested the potency of the EV products in a murine model of acute myocardial infarction. Our results demonstrate an advantage of the Quantum bioreactor as a large-scale platform for EV production using PLT media; however, both media produced EVs with similar effects in vivo. The systemic delivery of EV products improved cardiac function following myocardial infarctions as indicated by a significant improvement in ejection fraction as well as parameters of cardiac performance, afterload, contractility and lusitropy. CONCLUSION: These findings have important implications for scale-up strategies of EVs and will facilitate clinical trials for their clinical evaluation.

5.
J Neurosurg Spine ; 36(1): 135-144, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479193

RESUMO

OBJECTIVE: Schwann cells (SCs) have been shown to play an essential role in axon regeneration in both peripheral nerve injuries (PNIs) and spinal cord injuries (SCIs). The transplantation of SCs as an adjunctive therapy is currently under investigation in human clinical trials due to their regenerative capacity. Therefore, a reliable method for procuring large quantities of SCs from peripheral nerves is necessary. This paper presents a well-developed, validated, and optimized manufacturing protocol for clinical-grade SCs that are compliant with Current Good Manufacturing Practices (CGMPs). METHODS: The authors evaluated the SC culture manufacturing data from 18 clinical trial participants who were recruited for autologous SC transplantation due to subacute SCI (n = 7), chronic SCI (n = 8), or PNIs (n = 3). To initiate autologous SC cultures, a mean nerve length of 11.8 ± 3.7 cm was harvested either from the sural nerve alone (n = 17) or with the sciatic nerve (n = 1). The nerves were digested with enzymes and SCs were isolated and further expanded in multiple passages to meet the dose requirements for transplantation. RESULTS: An average yield of 87.2 ± 89.2 million cells at P2 and 150.9 ± 129.9 million cells at P3 with high viability and purity was produced. Cell counts and rates of expansion increased with each subsequent passage from P0 to P3, with the largest rate of expansion between P2 and P3. Larger harvest nerve lengths correlated significantly with greater yields at P0 and P1 (p < 0.05). In addition, a viability and purity above 90% was sustained throughout all passages in nearly all cell products. CONCLUSIONS: This study presents reliable CGMP-compliant manufacturing methods for autologous SC products that are suitable for regenerative treatment of patients with SCI, PNI, or other conditions.


Assuntos
Técnicas de Cultura de Células/métodos , Transplante de Células , Traumatismos dos Nervos Periféricos/terapia , Células de Schwann/fisiologia , Células de Schwann/transplante , Traumatismos da Medula Espinal/terapia , Adulto , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Transplante Autólogo , Adulto Jovem
6.
Respirology ; 26(2): 161-170, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32851725

RESUMO

BACKGROUND AND OBJECTIVE: IPF is a fatal and debilitating lung disorder increasing in incidence worldwide. To date, two approved treatments only slow disease progression, have multiple side effects and do not provide a cure. MSC have promising therapeutic potential as a cell-based therapy for many lung disorders based on the anti-fibrotic properties of the MSC. METHODS: Critical questions remain surrounding the optimal source, timing and efficacy of cell-based therapies. The present study examines the most effective sources of MSC. Human MSC were derived from adipose, WJ, chorionic membrane (CSC) and chorionic villi (CVC). MSC were injected into the ageing mouse model of BLM-induced lung fibrosis. RESULTS: All sources decreased Aschroft and hydroxyproline levels when injected into BLM-treated mice at day 10 with the exception of CSC cells that did not change hydroxyproline levels. There were also decreases in mRNA expression of αv -integrin and TNFα in all sources except CSC. Only ASC- and WJ-derived cells reduced AKT and MMP-2 activation, while Cav-1 was increased by ASC treatment as previously reported. BLM-induced miR dysregulation of miR-29 and miR-199 was restored only by ASC treatment. CONCLUSION: Our data suggest that sources of MSC may differ in the pathway(s) involved in repair.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/terapia , Adulto , Animais , Biomarcadores/metabolismo , Bleomicina , Caveolina 1/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transplante Homólogo
7.
Biomaterials ; 177: 176-185, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29929081

RESUMO

Schwann cell (SC) transplantation has been comprehensively studied as a strategy for spinal cord injury (SCI) repair. SCs are neuroprotective and promote axon regeneration and myelination. Nonetheless, substantial SC death occurs post-implantation, which limits therapeutic efficacy. The use of extracellular matrix (ECM)-derived matrices, such as Matrigel, supports transplanted SC survival and axon growth, resulting in improved motor function. Because appropriate matrices are needed for clinical translation, we test here the use of an acellular injectable peripheral nerve (iPN) matrix. Implantation of SCs in iPN into a contusion lesion did not alter immune cell infiltration compared to injury only controls. iPN implants were larger and contained twice as many SC-myelinated axons as Matrigel grafts. SC/iPN animals performed as well as the SC/Matrigel group in the BBB locomotor test, and made fewer errors on the grid walk at 4 weeks, equalizing at 8 weeks. The fact that this clinically relevant iPN matrix is immunologically tolerated and supports SC survival and axon growth within the graft offers a highly translational possibility for improving efficacy of SC treatment after SCI. To our knowledge, it is the first time that an injectable PN matrix is being evaluated to improve the efficacy of SC transplantation in SCI repair.


Assuntos
Células de Schwann/transplante , Nervo Isquiático/química , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal , Alicerces Teciduais/química , Animais , Axônios/metabolismo , Axônios/patologia , Células Cultivadas , Feminino , Locomoção , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Células de Schwann/citologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
8.
J Neural Eng ; 15(5): 056010, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29794323

RESUMO

OBJECTIVE: Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE), which is a piezoelectric, biocompatible polymer, holds promise as a scaffold in combination with Schwann cells (SCs) for spinal cord repair. Piezoelectric materials can generate electrical activity in response to mechanical deformation, which could potentially stimulate spinal cord axon regeneration. Our goal in this study was to investigate PVDF-TrFE scaffolds consisting of aligned fibers in supporting SC growth and SC-supported neurite extension and myelination in vitro. APPROACH: Aligned fibers of PVDF-TrFE were fabricated using the electrospinning technique. SCs and dorsal root ganglion (DRG) explants were co-cultured to evaluate SC-supported neurite extension and myelination on PVDF-TrFE scaffolds. MAIN RESULTS: PVDF-TrFE scaffolds supported SC growth and neurite extension, which was further enhanced by coating the scaffolds with Matrigel. SCs were oriented and neurites extended along the length of the aligned fibers. SCs in co-culture with DRGs on PVDF-TrFE scaffolds promoted longer neurite extension as compared to scaffolds without SCs. In addition to promoting neurite extension, SCs also formed myelin around DRG neurites on PVDF-TrFE scaffolds. SIGNIFICANCE: This study demonstrated PVDF-TrFE scaffolds containing aligned fibers supported SC-neurite extension and myelination. The combination of SCs and PVDF-TrFE scaffolds may be a promising tissue engineering strategy for spinal cord repair.


Assuntos
Hidrocarbonetos Fluorados/química , Bainha de Mielina/fisiologia , Neuritos/fisiologia , Polivinil/química , Células de Schwann/fisiologia , Alicerces Teciduais , Animais , Técnicas de Cocultura , Colágeno , Combinação de Medicamentos , Gânglios Espinais/citologia , Laminina , Proteoglicanas , Ratos , Ratos Sprague-Dawley
9.
Neural Regen Res ; 13(4): 684-691, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29722321

RESUMO

Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage depletion does improve histopathology of the injury site, the effect on axon growth and behavioral recovery appears no better than what can be achieved with Schwann cell transplants alone.

10.
Methods Mol Biol ; 1739: 269-279, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29546713

RESUMO

In vitro models using Schwann cell and astrocyte co-cultures have been used to understand the mechanisms underlying the formation of boundaries between these cells in vivo. Schwann cell/astrocyte co-cultures also mimic the in vivo scenario of a transplant in a spinal cord injury site, thereby allowing testing of therapeutic approaches. In this chapter, we describe a triple cell culture system with Schwann cells, astrocytes, and neurons that replicates axon growth from a Schwann cell graft into an astrocyte-rich region. In vitro studies using this model can accelerate the discovery of more effective therapeutic combinations to be used along with Schwann cell transplantation after spinal cord injuries.


Assuntos
Astrócitos/citologia , Neurônios/citologia , Células de Schwann/citologia , Animais , Células Cultivadas , Técnicas de Cocultura , Regeneração Nervosa/fisiologia , Ratos
11.
J Vis Exp ; (129)2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29155759

RESUMO

Among various models for spinal cord injury in rats, the contusion model is the most often used because it is the most common type of human spinal cord injury. The complete transection model, although not as clinically relevant as the contusion model, is the most rigorous method to evaluate axon regeneration. In the contusion model, it is difficult to distinguish regenerated from sprouted or spared axons due to the presence of remaining tissue post injury. In the complete transection model, a bridging method is necessary to fill the gap and create continuity from the rostral to the caudal stumps in order to evaluate the effectiveness of the treatments. A reliable bridging surgery is essential to test outcome measures by reducing the variability due to the surgical method. The protocols described here are used to prepare Schwann cells (SCs) and conduits prior to transplantation, complete transection of the spinal cord at thoracic level 8 (T8), insert the conduit, and transplant SCs into the conduit. This approach also uses in situ gelling of an injectable basement membrane matrix with SC transplantation that allows improved axon growth across the rostral and caudal interfaces with the host tissue.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Polivinil , Células de Schwann/transplante , Traumatismos da Medula Espinal/terapia , Medula Espinal/cirurgia , Animais , Feminino , Ratos , Ratos Endogâmicos F344
12.
Biotechnol Bioeng ; 114(2): 444-456, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27570167

RESUMO

Schwann cell (SC) transplantation has been utilized for spinal cord repair and demonstrated to be a promising therapeutic strategy. In this study, we investigated the feasibility of combining SC transplantation with novel conduits to bridge the completely transected adult rat spinal cord. This is the first and initial study to evaluate the potential of using a fibrous piezoelectric polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) conduit with SCs for spinal cord repair. PVDF-TrFE has been shown to enhance neurite growth in vitro and peripheral nerve repair in vivo. In this study, SCs adhered and proliferated when seeded onto PVDF-TrFE scaffolds in vitro. SCs and PVDF-TrFE conduits, consisting of random or aligned fibrous inner walls, were transplanted into transected rat spinal cords for 3 weeks to examine early repair. Glial fibrillary acidic protein (GFAP)+ astrocyte processes and GFP (green fluorescent protein)-SCs were interdigitated at both rostral and caudal spinal cord/SC transplant interfaces in both types of conduits, indicative of permissivity to axon growth. More noradrenergic/DßH+ (dopamine-beta-hydroxylase) brainstem axons regenerated across the transplant when greater numbers of GFAP+ astrocyte processes were present. Aligned conduits promoted extension of DßH+ axons and GFAP+ processes farther into the transplant than random conduits. Sensory CGRP+ (calcitonin gene-related peptide) axons were present at the caudal interface. Blood vessels formed throughout the transplant in both conduits. This study demonstrates that PVDF-TrFE conduits harboring SCs are promising for spinal cord repair and deserve further investigation. Biotechnol. Bioeng. 2017;114: 444-456. © 2016 Wiley Periodicals, Inc.


Assuntos
Neurônios Adrenérgicos/fisiologia , Células de Schwann/citologia , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal/fisiologia , Alicerces Teciduais/química , Neurônios Adrenérgicos/citologia , Animais , Axônios/fisiologia , Técnicas Eletroquímicas , Feminino , Hidrocarbonetos Fluorados/química , Polivinil/química , Ratos , Células de Schwann/fisiologia
13.
Tissue Eng Part A ; 18(19-20): 2063-72, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22646285

RESUMO

Human neural stem/progenitor cells (hNSCs/NPCs) are a promising cell source for neural tissue engineering because of their ability to differentiate into various neural lineages. In this study, hNSC/NPC differentiation was evaluated on piezoelectric, fibrous scaffolds. These smart materials have an intrinsic material property where transient electric potential can be generated in the material upon minute mechanical deformation. hNSCs/NPCs cultured on the scaffolds and films differentiated into ß-III tubulin-positive cells, a neuronal cell marker, with or without the presence of inductive factors. In contrast, hNSCs/NPCs cultured on laminin-coated plates were predominantly nestin positive, a NSC marker, in the control medium. Gene expression results suggest that the scaffolds may have promoted the formation of mature neural cells exhibiting neuron-like characteristics. hNSCs/NPCs differentiated mostly into ß-III tubulin-positive cells and had the greatest average neurite length on micron-sized, annealed (more piezoelectric), aligned scaffolds, demonstrating their potential for neural tissue-engineering applications.


Assuntos
Diferenciação Celular/fisiologia , Eletroquímica , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Alicerces Teciduais/química , Células Cultivadas , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Microscopia Eletrônica de Varredura , Proteínas do Tecido Nervoso/metabolismo , Nestina , Tubulina (Proteína)/metabolismo
14.
Acta Biomater ; 7(11): 3877-86, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21810489

RESUMO

Neural tissue engineering may be a promising option for neural repair treatment, for which a well-designed scaffold is essential. Smart materials that can stimulate neurite extension and outgrowth have been investigated as potential scaffolding materials. A piezoelectric polymer polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) was used to fabricate electrospun aligned and random scaffolds having nano- or micron-sized fiber dimensions. The advantage of using a piezoelectric polymer is its intrinsic electrical properties. The piezoelectric characteristics of PVDF-TrFE scaffolds were shown to be enhanced by annealing. Dorsal root ganglion (DRG) neurons attached to all fibrous scaffolds. Neurites extended radially on random scaffolds, whereas aligned scaffolds directed neurite outgrowth for all fiber dimensions. Neurite extension was greatest on aligned, annealed PVDF-TrFE having micron-sized fiber dimensions in comparison with annealed and as-spun random PVDF-TrFE scaffolds. DRG on micron-sized aligned, as-spun and annealed PVDF-TrFE also had the lowest aspect ratio amongst all scaffolds, including non-piezoelectric PVDF and collagen-coated substrates. Findings from this study demonstrate the potential use of a piezoelectric fibrous scaffold for neural repair applications.


Assuntos
Materiais Revestidos Biocompatíveis/química , Gânglios Espinais/metabolismo , Teste de Materiais , Neuritos/metabolismo , Alicerces Teciduais/química , Animais , Colágeno/química , Gânglios Espinais/citologia , Hidrocarbonetos Fluorados/química , Cloreto de Polivinila/análogos & derivados , Cloreto de Polivinila/química , Ratos
15.
J Orthop Res ; 28(7): 942-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20058266

RESUMO

Allograft (Allo) incorporation in the presence of a systemic disease like diabetes mellitus (DM) is becoming a major issue in the orthopedic community. Mesenchymal stem cells (MSC) are multipotent stem cells that may be derived from adult, whole bone marrow and have been shown to induce bone formation in segmental defects when combined with the appropriate carrier/scaffold. The objectives of this study were to analyze the effect of DM upon Allo incorporation in a segmental rat femoral defect and to also investigate MSC augmentation of Allo incorporation. Segmental (5 mm) femoral defects were created in non-DM and DM rats and treated with Allo containing demineralized bone matrix (DBM) or DBM with MSC augmentation. Histological scoring at 4 weeks demonstrated less mature bone in the DM/DBM group compared to its non-DM counterpart (p < 0.001). However, there was significantly more mature bone in the DM/MSC group when compared to the DM/DBM group at both 4 and 8 weeks (p < 0.001 and p = 0.004). Furthermore, significantly more bone formation was observed in the DM/MSC group compared to the DM/DBM group at the 4-week time point (p < 0.001). The results of this study suggest that MSC are a potential adjunct for bone regeneration when implanted in an orthotopic site in the presence of DM.


Assuntos
Transplante Ósseo , Diabetes Mellitus Tipo 1/fisiopatologia , Fraturas Ósseas/terapia , Sobrevivência de Enxerto/fisiologia , Transplante de Células-Tronco Mesenquimais , Animais , Técnica de Desmineralização Óssea , Diabetes Mellitus Tipo 1/complicações , Modelos Animais de Doenças , Consolidação da Fratura/fisiologia , Fraturas Ósseas/complicações , Fraturas Ósseas/fisiopatologia , Masculino , Células-Tronco Mesenquimais/fisiologia , Osteotomia , Ratos , Ratos Endogâmicos BB , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...