Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Plants (Basel) ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931087

RESUMO

Cryopreservation is a promising method for the long-term preservation of plant germplasm, especially for vegetatively propagated species like freesias. In this study, we investigate streamlining the cryopreservation process for 'Sunny Gold' Freesia, starting from effective in vitro initiation and proliferation using various plant growth regulator combinations. We also assess the impact of subculture on regrowth rates after cryopreservation. The shoot tips were successfully initiated in vitro after sterilization. The shoots were multiplied an average of three times in media containing N6-benzyladenine and kinetin. The regrowth rates of non-cryopreserved shoot tips excised from different subculture cycles did not differ significantly, with rates of 44% observed for plants from more than five subcultures and 47% for those from three subcultures. However, only the shoot tips excised from cultures subjected to three subculture cycles were able to recover after cryopreservation, with a regrowth rate of 31%. Our findings lay the groundwork for the development of an efficient cryopreservation protocol for freesias in the future.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38934030

RESUMO

Background: Though acute kidney injury (AKI) is a prevalent complication in critically ill patients, knowledge on the epidemiological differences and clinical characteristics of patients with AKI admitted to medical and surgical intensive care units (ICUs) remains limited. Methods: Electronic medical records of patients in ICUs in Pusan National University Hospital and Pusan National University Hospital Yangsan, from January 2011 to December 2020, were retrospectively analyzed. Different characteristics of AKI between patients were analyzed. The contribution of AKI to the in-hospital mortality rate was assessed using a Cox proportional hazards model. Results: A total of 7,150 patients were included in this study. AKI was more frequent in medical (48.7%) than in surgical patients (28.1%), with the severity of AKI higher in medical patients. In surgical patients, hospital-acquired AKI was more frequent (51% vs. 49%), whereas community-acquired AKI was more common in medical patients (58.5% vs. 41.5%). 16.9% and 5.9% of medical and surgical patients died in the hospital, respectively. AKI affected patient groups to different degrees. In surgical patients, AKI patients had 4.778 (3.577, 6.382, p < 0.001) folds higher risk of mortality than non-AKI patients whereas in medical AKI patients, it was 1.239 (1.051, 1.461, p = 0.011). Conclusion: While the prevalence of AKI itself is higher in medical patients, the impact of AKI on mortality was stronger in surgical patients compared to medical patients. This suggests that more attention is needed for perioperative patients to prevent and manage AKI.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38934038

RESUMO

Background: Continuous kidney replacement therapy (CKRT) is crucial in the management of acute kidney injury in intensive care units (ICUs). Nonetheless, the optimal anticoagulation strategy for patients with bleeding tendencies remains debated. This study aimed to evaluate patient outcomes and safety of nafamostat mesylate (NM) compared with no anticoagulation (NA) in critically ill patients with bleeding tendencies who were undergoing CKRT. Methods: This retrospective study enrolled 2,313 patients who underwent CKRT between March 2013 and December 2022 at the third affiliated hospital in South Korea. After applying the exclusion criteria, 490 patients were included in the final analysis, with 245 patients in the NM and NA groups each, following 1:1 propensity score matching. Subsequently, in-hospital mortality, incidence of bleeding complications, agranulocytosis, hyperkalemia, and length of hospital stay were assessed. Results: No significant differences were observed between the groups regarding the lengths of hospital and ICU stays or the incidence of agranulocytosis and hyperkalemia. The NM group showed a smaller decrease in hemoglobin levels during CKRT (-1.90 g/dL vs. -2.39 g/dL) and less need for blood product transfusions than the NA group. Furthermore, the NM group exhibited a survival benefit in patients who required transfusion of all three blood products. Conclusion: NM is an effective and safe anticoagulant for CKRT in critically ill patients, especially those requiring transfusion of all three blood products. Although these findings are promising, further multicenter studies are needed to validate them and explore the mechanisms underlying the observed benefits.

4.
BMC Nurs ; 23(1): 311, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714995

RESUMO

BACKGROUND: As the number of COVID-19 patients rises, there has been a notable increase in the workload for nurses. However, medium-sized hospitals lacked standardized protocols or consistent approaches to address the specific working conditions of nurses. Furthermore, concerns about patient care have heightened as the issue of nursing shortages coincides with the expansion of the comprehensive nursing care services project. PURPOSE: This study aimed to investigate the factors that influence patient safety management activities, such as calling, organizational commitment, job stress, and nursing work environment, among comprehensive nursing care service unit nurses during the COVID-19 pandemic. METHODS: A conceptual framework based on the Job Demand-Resource model and literature review of patient safety management activities was used to develop structured questionnaires that were distributed to 206 participants working in 7 comprehensive nursing care service units of small and medium-sized hospitals with at least 300 beds in the S and K provinces. Data analysis was conducted using descriptive statistics, chi-squared tests, t-tests, ANOVA, and hierarchical regression with the SPSS/WIN 23.0 program. RESULTS: The results showed that calling (ß =.383, p<.001) and job stress (ß= -.187, p=.029) significantly influenced patient safety nursing activities in comprehensive care service ward nurses. The explanatory power of the model was 26.0% (F= 6.098, p<.001). CONCLUSIONS: Our findings suggest that comprehensive care service ward nurses' career, income, COVID-19 patient nursing anxiety, calling, and job stress were important factors that influence patient safety nursing activities. Therefore, it was essential to develop calling education programs and improve the nursing work system and establish a fair compensation system during the pandemic situation.

5.
Biomater Res ; 28: 0017, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779139

RESUMO

During the COVID-19 pandemic, mRNA vaccines emerged as a rapid and effective solution for global immunization. The success of COVID-19 mRNA vaccines has increased interest in the use of lipid nanoparticles (LNPs) for the in vivo delivery of mRNA therapeutics. Although mRNA exhibits robust expression profiles, transient protein expression is often observed, raising uncertainty regarding the frequency of its administration. Additionally, various RNA therapeutics may necessitate repeated dosing to achieve optimal therapeutic outcomes. Nevertheless, the impact of repeated administrations of mRNA/LNP on immune responses and protein expression efficacy remains unclear. In this study, we investigated the influence of the formulation parameters, specifically ionizable lipids and polyethylene glycol (PEG) lipids, on the repeat administration of mRNA/LNP. Our findings revealed that ionizable lipids had no discernible impact on the dose-responsive efficacy of repeat administrations, whereas the lipid structure and molar ratio of PEG lipids were primary factors that affected mRNA/LNP performance. The optimization of the LNP formulation with PEG lipid confirmed the sustained dose-responsive efficacy of mRNA after repeated administrations. This study highlights the critical importance of optimizing LNP formulations for mRNA therapeutics requiring repeated administrations.

6.
Cell Rep Med ; 5(6): 101583, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38781962

RESUMO

Little is known about the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or SARS2) vaccine breakthrough infections (BTIs) on the magnitude and breadth of the T cell repertoire after exposure to different variants. We studied samples from individuals who experienced symptomatic BTIs during Delta or Omicron waves. In the pre-BTI samples, 30% of the donors exhibited substantial immune memory against non-S (spike) SARS2 antigens, consistent with previous undiagnosed asymptomatic SARS2 infections. Following symptomatic BTI, we observed (1) enhanced S-specific CD4 and CD8 T cell responses in donors without previous asymptomatic infection, (2) expansion of CD4 and CD8 T cell responses to non-S targets (M, N, and nsps) independent of SARS2 variant, and (3) generation of novel epitopes recognizing variant-specific mutations. These variant-specific T cell responses accounted for 9%-15% of the total epitope repertoire. Overall, BTIs boost vaccine-induced immune responses by increasing the magnitude and by broadening the repertoire of T cell antigens and epitopes recognized.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , COVID-19 , Epitopos de Linfócito T , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas contra COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Memória Imunológica/imunologia , Feminino , Adulto , Masculino , Mutação , Pessoa de Meia-Idade , Linfócitos T/imunologia , Infecções Irruptivas
7.
Adv Sci (Weinh) ; : e2308662, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666427

RESUMO

Cancer vaccines offer a promising avenue in cancer immunotherapy by inducing systemic, tumor-specific immune responses. Tumor extracellular vesicles (TEVs) are nanoparticles naturally laden with tumor antigens, making them appealing for vaccine development. However, their inherent malignant properties from the original tumor cells limit their direct therapeutic use. This study introduces a novel approach to repurpose TEVs as potent personalized cancer vaccines. The study shows that inhibition of both YAP and autophagy not only diminishes the malignancy-associated traits of TEVs but also enhances their immunogenic attributes by enriching their load of tumor antigens and adjuvants. These revamped TEVs, termed attenuated yet immunogenically potentiated TEVs (AI-TEVs), showcase potential in inhibiting tumor growth, both as a preventive measure and a possible treatment for recurrent cancers. They prompt a tumor-specific and enduring immune memory. In addition, by showing that AI-TEVs can counteract cancer growth in a personalized vaccine approach, a potential strategy is presented for developing postoperative cancer immunotherapy that's enduring and tailored to individual patients.

8.
Cell Biol Toxicol ; 40(1): 20, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578518

RESUMO

The epithelial-mesenchymal transition (EMT) and fibroblast activation are major events in idiopathic pulmonary fibrosis pathogenesis. Here, we investigated whether growth arrest-specific protein 6 (Gas6) plays a protective role in lung fibrosis via suppression of the EMT and fibroblast activation. rGas6 administration inhibited the EMT in isolated mouse ATII cells 14 days post-BLM treatment based on morphologic cellular alterations, changes in mRNA and protein expression profiles of EMT markers, and induction of EMT-activating transcription factors. BLM-induced increases in gene expression of fibroblast activation-related markers and the invasive capacity of primary lung fibroblasts in primary lung fibroblasts were reversed by rGas6 administration. Furthermore, the hydroxyproline content and collagen accumulation in interstitial areas with damaged alveolar structures in lung tissue were reduced by rGas6 administration. Targeting Gas6/Axl signaling events with specific inhibitors of Axl (BGB324), COX-2 (NS-398), EP1/EP2 receptor (AH-6809), or PGD2 DP2 receptor (BAY-u3405) reversed the inhibitory effects of rGas6 on EMT and fibroblast activation. Finally, we confirmed the antifibrotic effects of Gas6 using Gas6-/- mice. Therefore, Gas6/Axl signaling events play a potential role in inhibition of EMT process and fibroblast activation via COX-2-derived PGE2 and PGD2 production, ultimately preventing the development of pulmonary fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Fibroblastos , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Camundongos , Ciclo-Oxigenase 2/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Pulmão/metabolismo
9.
Pharmaceutics ; 16(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543204

RESUMO

Small Extracellular Vesicles (sEVs) are typically 30-150 nm in diameter, produced inside cells, and released into the extracellular space. These vesicles carry RNA, DNA, proteins, and lipids that reflect the characteristics of their parent cells, enabling communication between cells and the alteration of functions or differentiation of target cells. Owing to these properties, sEVs have recently gained attention as potential carriers for functional molecules and drug delivery tools. However, their use as a therapeutic platform faces limitations, such as challenges in mass production, purity issues, and the absence of established protocols and characterization methods. To overcome these, researchers are exploring the characterization and engineering of sEVs for various applications. This review discusses the origins of sEVs and their engineering for therapeutic effects, proposing areas needing intensive study. It covers the use of cell-derived sEVs in their natural state and in engineered forms for specific purposes. Additionally, the review details the sources of sEVs and their subsequent purification methods. It also outlines the potential of therapeutic sEVs and the requirements for successful clinical trials, including methods for large-scale production and purification. Finally, we discuss the progress of ongoing clinical trials and the implications for future healthcare, offering a comprehensive overview of the latest research in sEV applications.

10.
Adv Mater ; 36(26): e2313327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38402420

RESUMO

Choreographing the adaptive shapes of patterned surfaces to exhibit designable mechanical interactions with their environment remains an intricate challenge. Here, a novel category of strain-engineered dynamic-shape materials, empowering diverse multi-dimensional shape modulations that are combined to form fine-grained adaptive microarchitectures is introduced. Using micro-origami tessellation technology, heterogeneous materials are provided with strategic creases featuring stimuli-responsive micro-hinges that morph precisely upon chemical and electrical cues. Freestanding multifaceted foldable packages, auxetic mesosurfaces, and morphable cages are three of the forms demonstrated herein of these complex 4-dimensional (4D) metamaterials. These systems are integrated in dual proof-of-concept bioelectronic demonstrations: a soft foldable supercapacitor enhancing its power density (≈108 mW cm-2), and a bio-adaptive device with a dynamic shape that may enable novel smart-implant technologies. This work demonstrates that intelligent material systems are now ready to support ultra-flexible 4D microelectronics, which can impart autonomy to devices culminating in the tangible realization of microelectronic morphogenesis.

11.
Nucleic Acids Res ; 52(9): 5088-5106, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412240

RESUMO

Exploring the connection between ubiquitin-like modifiers (ULMs) and the DNA damage response (DDR), we employed several advanced DNA damage and repair assay techniques and identified a crucial role for LC3B. Notably, its RNA recognition motif (RRM) plays a pivotal role in the context of transcription-associated homologous recombination (HR) repair (TA-HRR), a particular subset of HRR pathways. Surprisingly, independent of autophagy flux, LC3B interacts directly with R-loops at DNA lesions within transcriptionally active sites via its RRM, promoting TA-HRR. Using native RNA immunoprecipitation (nRIP) coupled with high-throughput sequencing (nRIP-seq), we discovered that LC3B also directly interacts with the 3'UTR AU-rich elements (AREs) of BRCA1 via its RRM, influencing its stability. This suggests that LC3B regulates TA-HRR both proximal to and distal from DNA lesions. Data from our LC3B depletion experiments showed that LC3B knockdown disrupts end-resection for TA-HRR, redirecting it towards the non-homologous end joining (NHEJ) pathway and leading to chromosomal instability, as evidenced by alterations in sister chromatid exchange (SCE) and interchromosomal fusion (ICF). Thus, our findings unveil autophagy-independent functions of LC3B in DNA damage and repair pathways, highlighting its importance. This could reshape our understanding of TA-HRR and the interaction between autophagy and DDR.


Assuntos
Proteína BRCA1 , Proteínas Associadas aos Microtúbulos , Estruturas R-Loop , Reparo de DNA por Recombinação , Transcrição Gênica , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Regiões 3' não Traduzidas , Recombinação Homóloga , Linhagem Celular Tumoral , Troca de Cromátide Irmã
12.
Virology ; 593: 110010, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38364352

RESUMO

Tomato chlorosis virus (ToCV) is an emerging pathogen that cause severe yellow leaf disorder syndrome in tomato plants. In this study, we aimed to generate a recombinant ToCV tagged with green fluorescent protein (GFP) to enable real-time monitoring of viral infection in living plants. Transformation of the full-length cDNA construct of ToCV RNA1 into Escherichia coli resulted in instability issues, which were successfully overcome by inserting a plant intron into RNA1. Subsequently, a GFP tag was engineered into a cDNA construct of ToCV RNA2. The resulting recombinant ToCV-GFP could systemically infect Nicotiana benthamiana plants, and GFP expression was observed along the major veins. Utilizing ToCV-GFP, we also showed that ToCV engages in antagonistic relationships with two different tomato-infecting viruses in mixed infections in N. benthamiana. This study demonstrates the potential of ToCV-GFP as a valuable tool for the visual tracking of infection and movement of criniviruses in living plants.


Assuntos
Crinivirus , Solanum lycopersicum , Animais , Crinivirus/genética , DNA Complementar/genética , Doenças das Plantas , Insetos Vetores , Plantas , Solanum lycopersicum/genética
13.
Nat Commun ; 15(1): 1288, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346943

RESUMO

O2-type lithium-rich layered oxides, known for mitigating irreversible transition metal migration and voltage decay, provide suitable framework for exploring the inherent properties of oxygen redox. Here, we present a series of O2-type lithium-rich layered oxides exhibiting minimal structural disordering and stable voltage retention even with high anionic redox participation based on the nominal composition. Notably, we observe a distinct asymmetric lattice breathing phenomenon within the layered framework driven by excessive oxygen redox, which includes substantial particle-level mechanical stress and the microcracks formation during cycling. This chemo-mechanical degradation can be effectively mitigated by balancing the anionic and cationic redox capabilities, securing both high discharge voltage (~ 3.43 V vs. Li/Li+) and capacity (~ 200 mAh g-1) over extended cycles. The observed correlation between the oxygen redox capability and the structural evolution of the layered framework suggests the distinct intrinsic capacity fading mechanism that differs from the previously proposed voltage fading mode.

14.
Oral Maxillofac Surg ; 28(1): 289-298, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773214

RESUMO

PURPOSE: Anterior segmental osteotomy (ASO) following the surgery-first approach is a long-established treatment modality to resolve lip protrusion in patients with skeletal class II patterns. However, the indications and effectiveness of ASO still remain uncertain. The objective of this study is to investigate the effectiveness of ASO in Asian skeletal class II patients by evaluating the skeletal and soft tissue changes and analyzing pre-treatment variables that determine successful outcomes in occlusal as well as esthetic aspects. METHODS: The lateral cephalograms of 44 skeletal class II patients who underwent ASO and orthodontic treatment for resolving lip protrusion were retrospectively collected. Hard and soft tissue variables of two groups, normalized (NG) and unnormalized (UNG) ANB after treatment were compared and analyzed. The rotational effect of the anterior segment on the hard and soft tissue was also investigated. RESULTS: ASO was successful in correcting the skeletal class II relationship and lip protrusion (ΔANB - 2.3°, 4-5 mm lips retraction) in most cases. However, for patients with severely camouflaged skeletal class II incisors involving a large ANB and SNA, a large ANB still remained post-treatment. The study also found that rotation of the upper and lower anterior segments further augmented the amount of lip retraction. CONCLUSIONS: ASO was found to successfully correct ANB of skeletal class II patients under the following conditions (ANB 5.3° ± 1.5°, SNB 77.3° ± 4.5°, U1 to FH 115° ± 7.5, L1 to FH 48.0° ± 4.6). However, patients with larger ANB and SNA values may require bi-maxillary surgery. In addition, ASO has limitations in correcting gummy smile in cases of extreme maxillary excess. For patients requiring a large amount of lip retraction, rotation of the anterior segment may be beneficial in conjunction with bi-maxillary surgery.


Assuntos
Má Oclusão Classe II de Angle , Mandíbula , Humanos , Maxila , Estudos Retrospectivos , Estética Dentária , Cefalometria , Gengiva , Sorriso , Osteotomia , Resultado do Tratamento , Má Oclusão Classe II de Angle/diagnóstico por imagem , Má Oclusão Classe II de Angle/cirurgia
15.
Int Immunopharmacol ; 127: 111428, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159551

RESUMO

Free fatty acid 3 receptor (FFA3; previously GPR41) is a G protein-coupled receptor that senses short-chain fatty acids and dietary metabolites produced by the gut microbiota. FFA3 deficiency reportedly exacerbates inflammatory events in asthma. Herein, we aimed to determine the therapeutic potential of FFA3 agonists in treating inflammatory diseases. We investigated the effects of N-(2,5-dichlorophenyl)-4-(furan-2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxamide (AR420626), an FFA3 agonist, in in vivo models of chemically induced allergic asthma and eczema in BALB/c mice. Administration of AR420626 decreased the number of immune cells in the bronchoalveolar lavage fluid and skin. AR420626 suppressed inflammatory cytokine expression in the lung and skin tissues. Histological examination revealed that AR420626 suppressed inflammation in the lungs and skin. Treatment with AR420626 significantly suppressed the enhanced lymph node size and inflammatory cytokine levels. Overall, FFA3 agonist AR420626 could suppress allergic asthma and eczema, implying that activation of FFA3 might be a therapeutic target for allergic diseases.


Assuntos
Asma , Eczema , Camundongos , Animais , Ácidos Graxos não Esterificados/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Asma/tratamento farmacológico , Citocinas/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina , Modelos Animais de Doenças
16.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958940

RESUMO

As members of pathogen-associated molecular patterns, bacterial heat shock proteins (HSPs) are widely recognized for their role in initiating innate immune responses. This study aimed to examine the impact of DnaJ, a homolog of HSP40 derived from Pseudomonas aeruginosa (P. aeruginosa), on the regulation of IL-1ß expression in macrophages. We demonstrated that DnaJ modulates macrophages to secrete IL-1ß by activating NF-κB and MAPK signaling pathways. Specifically, ERK was identified as a positive mediator for IL-1ß expression, while p38 acted as a negative mediator. These results suggest that the reciprocal actions of these two crucial MAPKs play a vital role in controlling IL-1ß expression. Additionally, the reciprocal actions of MAPKs were found to regulate the activation of inflammasome-related molecules, including vimentin, NLRP3, caspase-1, and GSDMD. Furthermore, our investigation explored the involvement of CD91/CD40 in ERK signaling-mediated IL-1ß production from DnaJ-treated macrophages. These findings emphasize the importance of understanding the signaling mechanisms underlying IL-1ß induction and suggest the potential utility of DnaJ as an adjuvant for stimulating inflammasome activation.


Assuntos
Inflamassomos , Pseudomonas aeruginosa , Inflamassomos/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , NF-kappa B/metabolismo , Interleucina-1beta/metabolismo
17.
Mol Ther Nucleic Acids ; 34: 102050, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37916225

RESUMO

Gene therapy and rebalancing therapy have emerged as promising approaches for treating hemophilia A, but there are limitations, such as temporary efficacy due to individual differences. Genome editing for hemophilia has shown long-term therapeutic potential in preclinical trials. However, a cautious approach is necessary because genome editing is irreversible. Therefore, we attempted to induce low-level human factor 8 (hF8) gene knockin (KI) using 244-cis lipid nanoparticles and low-dose adeno-associated virus to minimize side effects and achieve a therapeutic threshold in hemophilia A mice. We selected the serpin family C member 1, SerpinC1, locus as a target to enable a combined rebalancing strategy with hF8 KI to augment efficacy. This strategy improved blood coagulation activity and reduced hemophilic complications without adverse effects. Furthermore, hemophilic mice with genome editing exhibit enhanced survival for 40 weeks. Here, we demonstrate an effective, safe, and sustainable treatment for hemophilia A. This study provides valuable information to establish safe and long-term genome-editing-mediated treatment strategies for treating hemophilia and other protein-deficient genetic diseases.

18.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003275

RESUMO

Maternal hyperglycemia, induced by gestational diabetes mellitus (GDM), has detrimental effects on fetal vascular development, ultimately increasing the risk of cardiovascular diseases in offspring. The potential underlying mechanisms through which these complications occur are due to functional impairment and epigenetic changes in fetal endothelial progenitor cells (EPCs), which remain less defined. We confirm that intrauterine hyperglycemia leads to the impaired angiogenic function of fetal EPCs, as observed through functional assays of outgrowth endothelial cells (OECs) derived from fetal EPCs of GDM pregnancies (GDM-EPCs). Notably, PCDH10 expression is increased in OECs derived from GDM-EPCs, which is associated with the inhibition of angiogenic function in fetal EPCs. Additionally, increased PCDH10 expression is correlated with the hypomethylation of the PCDH10 promoter. Our findings demonstrate that in utero exposure to GDM can induce angiogenic dysfunction in fetal EPCs through altered gene expression and epigenetic changes, consequently increasing the susceptibility to cardiovascular diseases in the offspring of GDM mothers.


Assuntos
Doenças Cardiovasculares , Diabetes Gestacional , Células Progenitoras Endoteliais , Hiperglicemia , Gravidez , Feminino , Humanos , Diabetes Gestacional/metabolismo , Células Progenitoras Endoteliais/metabolismo , Feto/metabolismo , Hiperglicemia/metabolismo , Protocaderinas
19.
Bioeng Transl Med ; 8(6): e10556, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023699

RESUMO

mRNA-based protein replacement therapy has received much attention as a novel intervention in clinical disease treatment. Lipid nanoparticles (LNPs) are widely used for their therapeutic potential to efficiently deliver mRNA. However, clinical translation has been hampered by the immunogenicity of LNPs that may aggravate underlying disease states. Here, we report a novel ionizable LNP with enhanced potency and safety. The piperazine-based biodegradable ionizable lipid (244cis) was developed for LNP formulation and its level of protein expression and immunogenicity in the target tissue was evaluated. It was found that 244cis LNP enabled substantial expression of the target protein (human erythropoietin), while it minimally induced the secretion of monocyte chemoattractant protein 1 (MCP-1) as compared to other conventional LNPs. Selective lung targeting of 244cis LNP was further investigated in tdTomato transgenic mice with bleomycin-induced pulmonary fibrosis (PF). The repeated administration of 244cis LNP with Cre recombinase mRNA achieved complete transfection of lung endothelial cells (~80%) and over 40% transfection of Sca-1-positive fibroblasts. It was shown that 244cis LNP allows the repeated dose of mRNA without the loss of activity due to its low immunogenicity. Our results demonstrate that 244cis LNP has great potential for the treatment of chronic diseases in the lungs with improved potency and safety.

20.
Exp Mol Med ; 55(10): 2085-2096, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37779140

RESUMO

Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles.


Assuntos
Nanopartículas , Vacinas , Vacinas de mRNA , Lipossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...