Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 59(5): 2487-2495, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30840452

RESUMO

Isocitrate lyase (ICL) is a persistent factor for the survival of dormant stage Mycobacterium tuberculosis (MTB), thus a potential drug target for tuberculosis treatment. In this work, ensemble docking approach was used to screen for potential inhibitors of ICL. The ensemble conformations of ICL active site were obtained from molecular dynamics simulation on three dimer form systems, namely the apo ICL, ICL in complex with metabolites (glyoxylate and succinate), and ICL in complex with substrate (isocitrate). Together with the ensemble conformations and the X-ray crystal structures, 22 structures were used for the screening against Malaysian Natural Compound Database (NADI). The top 10 compounds for each ensemble conformation were selected. The number of compounds was then further narrowed down to 22 compounds that were within the Lipinski's Rule of Five for drug-likeliness and were also docked into more than one ensemble conformation. Theses 22 compounds were furthered evaluate using whole cell assay. Some compounds were not commercially available; therefore, plant crude extracts were used for the whole cell assay. Compared to itaconate (the known inhibitor of ICL), crude extracts from Manilkara zapota, Morinda citrifolia, Vitex negundo, and Momordica charantia showed some inhibition activity. The MIC/MBC value were 12.5/25, 12.5/25, 0.78/1.6, and 0.39/1.6 mg/mL, respectively. This work could serve as a preliminary study in order to narrow the scope for high throughput screening in the future.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Isocitrato Liase/antagonistas & inibidores , Isocitrato Liase/metabolismo , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Isocitrato Liase/química
2.
J Chem Inf Model ; 57(9): 2351-2357, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28820943

RESUMO

Tuberculosis (TB) still remains a global threat due to the emergence of a drug-resistant strain. Instead of focusing on the drug target of active stage TB, we are highlighting the isocitrate lyase (ICL) at the dormant stage TB. ICL is one of the persistent factors for Mycobacterium tuberculosis (MTB) to survive during the dormant phase. In addition, the absence of ICL in human has made ICL a potential drug target for TB therapy. However, the dynamic details of ICL which could give insights to the ICL-ligand interaction have yet to be solved. Therefore, a series of ICL dimer dynamics studies through molecular dynamics simulation were performed in this work. The ICL active site entrance gate closure is contributed to by hydrogen bonding and electrostatic interactions with the C-terminal. Analysis suggested that the open-closed behavior of the ICL active site entrance depends on the type of ligand present in the active site. We also observed four residues (Ser91, Asp108, Asp153, and Cys191) which could possibly be the nucleophiles for nucleophilic attack on the cleavage of isocitrate at the C2-C3 bond. We hope that the elucidation of ICL dynamics can benefit future works such as lead identification or antibody design against ICL for TB therapeutics.


Assuntos
Domínio Catalítico , Isocitrato Liase/química , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/enzimologia , Multimerização Proteica , Isocitrato Liase/metabolismo , Estrutura Quaternária de Proteína
3.
Adv Exp Med Biol ; 1053: 221-243, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29549642

RESUMO

The use of monoclonal antibody as the next generation protein therapeutics with remarkable success has surged the development of antibody engineering to design molecules for optimizing affinity, better efficacy, greater safety and therapeutic function. Therefore, computational methods have become increasingly important to generate hypotheses, interpret and guide experimental works. In this chapter, we discussed the overall antibody design by computational approches.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Desenho Assistido por Computador , Desenho de Fármacos , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
4.
Biomed Res Int ; 2015: 895453, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25649791

RESUMO

Isocitrate lyase (ICL) is the first enzyme involved in glyoxylate cycle. Many plants and microorganisms are relying on glyoxylate cycle enzymes to survive upon downregulation of tricarboxylic acid cycle (TCA cycle), especially Mycobacterium tuberculosis (MTB). In fact, ICL is a potential drug target for MTB in dormancy. With the urge for new antitubercular drug to overcome tuberculosis treat such as multidrug resistant strain and HIV-coinfection, the pace of drug discovery has to be increased. There are many approaches to discovering potential inhibitor for MTB ICL and we hereby review the updated list of them. The potential inhibitors can be either a natural compound or synthetic compound. Moreover, these compounds are not necessary to be discovered only from MTB ICL, as it can also be discovered by a non-MTB ICL. Our review is categorized into four sections, namely, (a) MTB ICL with natural compounds; (b) MTB ICL with synthetic compounds; (c) non-MTB ICL with natural compounds; and (d) non-MTB ICL with synthetic compounds. Each of the approaches is capable of overcoming different challenges of inhibitor discovery. We hope that this paper will benefit the discovery of better inhibitor for ICL.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos , Isocitrato Liase/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Micobactérias não Tuberculosas/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico , Isocitrato Liase/química , Isocitrato Liase/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...