Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(7): e0219257, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31287827

RESUMO

This study addresses the effects of large-amplitude vibration on the pressure-dependent absorption of a structure multiple-cavity system. It is the first study to consider the effects of large-amplitude vibration and pressure-dependent absorption. Previous studies considered only one of these two factors in the absorption calculation of a perforated panel absorber. Nonlinear differential equations, which represent the structural vibration of a perforated panel absorber, are coupled with the wave equation, which represents the acoustic pressures induced within the cavities. The coupled nonlinear differential equations are solved with the proposed harmonic balance method, which has recently been adopted to solve nonlinear beam problems and other nonlinear structural-acoustic problems. Its main advantage is that when compared with the classical harmonic balance method, the proposed method generates fewer nonlinear algebraic equations during the solution process. In addition, the solution form of the nonlinear differential equations from this classical method can be expressed in terms of a set of symbolic parameters with various physical meanings. If a numerical method is used, there is no analytic solution form, and the final solution is a set of numerical values. The effects of the excitation magnitude, cavity depth, perforation ratio, and hole diameter on the sound absorption of a panel absorber are investigated, and mode and solution convergence studies are also performed. The solutions from the proposed harmonic balance method and a numerical integration method are compared. The numerical results show that the present harmonic balance solutions agree reasonably well with those obtained with the numerical integration method. Several important observations can be made. First, perforation nonlinearity is a very important factor in the absorption of a panel absorber at the off structural resonant frequency range. The settings of the hole diameter, perforation ratio, and cavity depth for optimal absorption differ greatly with consideration of perforation nonlinearity. Second, the "jump up phenomenon," which does not occur in the case of linear perforation, is observed when perforation nonlinearity is considered. Third, one or more absorption troughs, which worsen the average absorption performance, may exist in cases with multiple cavities.


Assuntos
Porosidade , Vibração/efeitos adversos , Acústica , Simulação por Computador , Desenho de Equipamento/métodos , Modelos Teóricos , Dinâmica não Linear , Fenômenos Físicos , Som
2.
PLoS One ; 13(7): e0199159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969458

RESUMO

This study addresses the nonlinear structure-extended cavity interaction simulation using a new version of the multilevel residue harmonic balance method. This method has only been adopted once to solve a nonlinear beam problem. This is the first study to use this method to solve a nonlinear structural acoustic problem. This study has two focuses: 1) the new version of the multilevel residue harmonic balance method can generate the higher-level nonlinear solutions ignored in the previous version and 2) the effect of the extended cavity, which has not been considered in previous studies, is examined. The cavity length of a panel-cavity system is sometimes longer than the panel length. However, many studies have adopted a model in which the cavity length is equal to the panel length. The effects of excitation magnitude, cavity depth, damping and number of structural modes on sound and vibration responses are investigated for various panel cases. In the simulations, the present harmonic balance solutions agree reasonably well with those obtained from the classical harmonic balance method. There are two important findings. First, the nonlinearity of a structural acoustic system highly depends on the cavity size. If the cavity size is smaller, the nonlinearity is higher. A large cavity volume implies a low stiffness or small acoustic pressure transmitted from the source panel to the nonlinear panel. In other words, the additional volume in an extended cavity affects the nonlinearity, sound and vibration responses of a structural acoustic system. Second, if an acoustic resonance couples with a structural resonance, nonlinearity is amplified and thus the insertion loss is adversely affected.


Assuntos
Acústica/instrumentação , Modelos Estatísticos , Dinâmica não Linear , Simulação por Computador , Humanos , Som , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...