Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(20): 13926-13933, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38686304

RESUMO

This study explored the influence of structural characteristics of organic contaminants on the degradation during an advanced oxidation process (AOP). The target contaminants were acetaminophen (ACT), bisphenol A (BPA), and tetracycline (TC). The Fenton process was selected as the model process in which major reactive species of hydroxyl radicals in most AOPs are generated for target compound degradation. The optimal reagent concentration ratio was [Fe2+]/[H2O2] = 0.5 mM/0.5 mM in an acidic condition, resulting in 83.49%, 79.01%, and 91.37% removals of ACT, BPA, and TC, respectively. Contrarily, the mineralization rates were apparently lower compared to their respective removal efficiencies. Experimental observation also suggested that the aromatic structure was rather difficult to degrade since their unsaturated electron clouds would hinder the attack of hydroxyl radicals due to electric repulsion. The preferred attacking sites of an aromatic ring differ due to the functional groups and structure symmetry. However, the electrophilic attack of the hydroxyl radical is the major reaction for decomposing aliphatic structures of cyclic or branched organics, resulting in the highest removal and mineralization of TC among these three tested chemicals. In addition, an apparent removal of a contaminant may not necessarily reduce its toxic impact on the environment.

2.
Chemosphere ; 258: 127338, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32544813

RESUMO

This study aimed to explore the catalytic effect of co-dissolved organic compounds on the tetracycline degradation by Fenton process both in the acidic and neutral environment. The experiments were carried out at [Fe2+]/[H2O2] of 50 µM/50 µM and 50 µM/100 µM. The humic acid, citrate and α-cyclodextrin were selected as the co-dissolved organic compounds. The best removal efficiency of 71% was observed at [Fe2+]/[H2O2] of 50 µM/100 µM without the presence of co-dissolved organic compounds. In the presence of co-dissolved organic compounds, the competition effect occurred and tetracycline removal efficiency was reduced to different extents depending on the H2O2 concentrations and chemical properties of the co-dissolved organic substances. The mechanistic exploration confirmed that the complex-forming interactions among Fe2+, tetracycline and organic co-dissolved molecules kept the catalytic ferrous/ferric redox cycle operating to generate hydroxyl radicals for tetracycline degradation at neutral condition, and this phenomenon was more obvious when the H2O2 concentration was higher. Complex formation also contributed to the overall tetracycline removal in addition to oxidation reactions. By comparing to the mass spectra of citrate, the α-cyclodextrin having a larger molecular structure might react with hydroxyl radicals at a higher probability, resulting in an apparent difference in degradation efficiency despite of the equality of their existing amount in the beginning of the experiment.


Assuntos
Recuperação e Remediação Ambiental/métodos , Peróxido de Hidrogênio/química , Compostos Orgânicos/química , Poluentes Químicos da Água/química , Catálise , Substâncias Húmicas , Ferro/química , Oxirredução , Tetraciclina/química , Poluentes Químicos da Água/análise
3.
Nanoscale ; 12(5): 2992-2998, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31840699

RESUMO

Artificial molecular machines synthesized in supramolecular chemistry have attracted great interest over the past decades. DNA origami presents an alternative approach to construct nano-machines by directly designing its thermodynamically stable state by DNA sequences. Here, we construct a molecular device, named NanoMuscle, with mechanically interlocked DNA origami. NanoMuscle's configuration - either extended or contracted - can be controlled by adding specific DNA strands. We monitored NanoMuscle's multistep synthesis with gel electrophoresis, and verified that monomers of the NanoMuscle are interlocked at correct orientation with transmission electron microscopy (TEM). We then validated that NanoMuscle can switch between extended and contracted configuration. By converting binding energy from DNA hybridization and Brownian motion to mechanical movements, NanoMuscle may serve as a novel building block for future mesoscale machinery.


Assuntos
DNA/química , Movimento (Física) , Músculos , Nanoestruturas/química , Nanotecnologia , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...