Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 8(5): 1164-1173, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28416283

RESUMO

The striking rise of obesity-related metabolic disorders has focused attention on adipocytes as critical mediators of disease phenotypes. To better understand the role played by excess adipose in metabolic dysfunction it is crucial to decipher the transcriptional underpinnings of the low-grade adipose inflammation characteristic of diseases such as type 2 diabetes. Through employing a comparative transcriptomics approach, we identified IRF1 as differentially regulated between primary and in vitro-derived genetically matched adipocytes. This suggests a role as a mediator of adipocyte inflammatory phenotypes, similar to its function in other tissues. Utilizing adipose-derived mesenchymal progenitors we subsequently demonstrated that expression of IRF1 in adipocytes indeed contributes to upregulation of inflammatory processes, both in vitro and in vivo. This highlights IRF1's relevance to obesity-related inflammation and the resultant metabolic dysregulation.


Assuntos
Adipócitos/metabolismo , Fator Regulador 1 de Interferon/genética , Obesidade/metabolismo , Fenótipo , Adipócitos/citologia , Animais , Células Cultivadas , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Obesidade/genética , Transcriptoma , Regulação para Cima
2.
Endocrinology ; 156(6): 2039-48, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25811318

RESUMO

Donohue syndrome (DS) is characterized by severe insulin resistance due to mutations in the insulin receptor (INSR) gene. To identify molecular defects contributing to metabolic dysregulation in DS in the undifferentiated state, we generated mesenchymal progenitor cells (MPCs) from induced pluripotent stem cells derived from a 4-week-old female with DS and a healthy newborn male (control). INSR mRNA and protein were significantly reduced in DS MPC (for ß-subunit, 64% and 89% reduction, respectively, P < .05), but IGF1R mRNA and protein did not differ vs control. Insulin-stimulated phosphorylation of INSR or the downstream substrates insulin receptor substrate 1 and protein kinase B did not differ, but ERK phosphorylation tended to be reduced in DS (32% decrease, P = .07). By contrast, IGF-1 and insulin-stimulated insulin-like growth factor 1 (IGF-1) receptor phosphorylation were increased in DS (IGF-1, 8.5- vs 4.5-fold increase; INS, 11- vs 6-fold; P < .05). DS MPC tended to have higher oxygen consumption in both the basal state (87% higher, P =.09) and in response to the uncoupler carbonyl cyanide-p-triflouromethoxyphenylhydrazone (2-fold increase, P =.06). Although mitochondrial DNA or mass did not differ, oxidative phosphorylation protein complexes III and V were increased in DS (by 37% and 6%, respectively; P < .05). Extracellular acidification also tended to increase in DS (91% increase, P = .07), with parallel significant increases in lactate secretion (34% higher at 4 h, P < .05). In summary, DS MPC maintain signaling downstream of the INSR, suggesting that IGF-1R signaling may partly compensate for INSR mutations. However, alterations in receptor expression and pathway-specific defects in insulin signaling, even in undifferentiated cells, can alter cellular oxidative metabolism, potentially via transcriptional mechanisms.


Assuntos
Sobrevivência Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Resistência à Insulina/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , DNA Mitocondrial/metabolismo , Feminino , Citometria de Fluxo , Humanos , Lactente , Recém-Nascido , Masculino
3.
Nat Cell Biol ; 17(1): 57-67, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25487280

RESUMO

The rising incidence of obesity and related disorders such as diabetes and heart disease has focused considerable attention on the discovery of new therapeutics. One promising approach has been to increase the number or activity of brown-like adipocytes in white adipose depots, as this has been shown to prevent diet-induced obesity and reduce the incidence and severity of type 2 diabetes. Thus, the conversion of fat-storing cells into metabolically active thermogenic cells has become an appealing therapeutic strategy to combat obesity. Here, we report a screening platform for the identification of small molecules capable of promoting a white-to-brown metabolic conversion in human adipocytes. We identified two inhibitors of Janus kinase (JAK) activity with no precedent in adipose tissue biology that stably confer brown-like metabolic activity to white adipocytes. Importantly, these metabolically converted adipocytes exhibit elevated UCP1 expression and increased mitochondrial activity. We further found that repression of interferon signalling and activation of hedgehog signalling in JAK-inactivated adipocytes contributes to the metabolic conversion observed in these cells. Our findings highlight a previously unknown role for the JAK-STAT pathway in the control of adipocyte function and establish a platform to identify compounds for the treatment of obesity.


Assuntos
Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Janus Quinase 3/antagonistas & inibidores , Oxazinas/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Animais , Proteína Morfogenética Óssea 7 , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Perfilação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Interferon gama/biossíntese , Interferon gama/farmacologia , Canais Iônicos/biossíntese , Janus Quinase 1/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Obesidade/prevenção & controle , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia , Proteína Desacopladora 1 , Alcaloides de Veratrum/farmacologia
4.
Diabetes ; 63(12): 4130-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25059784

RESUMO

Insulin resistance is central to diabetes and metabolic syndrome. To define the consequences of genetic insulin resistance distinct from those secondary to cellular differentiation or in vivo regulation, we generated induced pluripotent stem cells (iPSCs) from individuals with insulin receptor mutations and age-appropriate control subjects and studied insulin signaling and gene expression compared with the fibroblasts from which they were derived. iPSCs from patients with genetic insulin resistance exhibited altered insulin signaling, paralleling that seen in the original fibroblasts. Insulin-stimulated expression of immediate early genes and proliferation were also potently reduced in insulin resistant iPSCs. Global gene expression analysis revealed marked differences in both insulin-resistant iPSCs and corresponding fibroblasts compared with control iPSCs and fibroblasts. Patterns of gene expression in patients with genetic insulin resistance were particularly distinct in the two cell types, indicating dependence on not only receptor activity but also the cellular context of the mutant insulin receptor. Thus, iPSCs provide a novel approach to define effects of genetically determined insulin resistance. This study demonstrates that effects of insulin resistance on gene expression are modified by cellular context and differentiation state. Moreover, altered insulin receptor signaling and insulin resistance can modify proliferation and function of pluripotent stem cell populations.


Assuntos
Antígenos CD/genética , Proliferação de Células/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Resistência à Insulina/genética , Receptor de Insulina/genética , Adolescente , Células Cultivadas , Criança , Perfilação da Expressão Gênica , Humanos , Lactente , Recém-Nascido
5.
Development ; 141(16): 3123-33, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25063451

RESUMO

The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype.


Assuntos
Células Acinares/citologia , Regulação da Expressão Gênica no Desenvolvimento , Pâncreas/embriologia , Pâncreas/crescimento & desenvolvimento , Receptores Citoplasmáticos e Nucleares/fisiologia , Células-Tronco/citologia , Animais , Sequência de Bases , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Fenótipo , Receptores Citoplasmáticos e Nucleares/genética , Transgenes
6.
Methods Enzymol ; 538: 35-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24529432

RESUMO

Given the rapid increase in the prevalence of obesity and related metabolic diseases, research to better understand adipose tissue biology and physiology has garnered considerable attention. Adipose has been studied using both cell culture systems and model organisms. However, the mechanisms of adipocyte regulation are not comprehensively understood, as currently available in vitro or in vivo systems do not fully recapitulate human metabolic processes. Human primary adipocytes are difficult to culture and expand, and current cell systems have limitations such as cell line-to-cell line variability for adipocyte differentiation, decreased proliferation, and differentiation potential upon continued passaging. To overcome these limitations, we developed and established an efficient and robust adipocyte differentiation protocol using human pluripotent stem cells (hPSCs) and inducible expression of key adipogenic transcriptional regulators. Here, we provide a simple and stepwise protocol for programming hPSCs into mature white or brown adipocytes.


Assuntos
Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Adipogenia , Células-Tronco Pluripotentes/citologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Humanos , Lentivirus/genética , Células-Tronco Pluripotentes/metabolismo , Ativação Transcricional , Transfecção
7.
Cell Metab ; 19(1): 96-108, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24411942

RESUMO

The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) regulates metabolic genes in skeletal muscle and contributes to the response of muscle to exercise. Muscle PGC-1α transgenic expression and exercise both increase the expression of thermogenic genes within white adipose. How the PGC-1α-mediated response to exercise in muscle conveys signals to other tissues remains incompletely defined. We employed a metabolomic approach to examine metabolites secreted from myocytes with forced expression of PGC-1α, and identified ß-aminoisobutyric acid (BAIBA) as a small molecule myokine. BAIBA increases the expression of brown adipocyte-specific genes in white adipocytes and ß-oxidation in hepatocytes both in vitro and in vivo through a PPARα-mediated mechanism, induces a brown adipose-like phenotype in human pluripotent stem cells, and improves glucose homeostasis in mice. In humans, plasma BAIBA concentrations are increased with exercise and inversely associated with metabolic risk factors. BAIBA may thus contribute to exercise-induced protection from metabolic diseases.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Ácidos Aminoisobutíricos/farmacologia , Doenças Cardiovasculares/metabolismo , Fígado/metabolismo , Doenças Metabólicas/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Marrons/patologia , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Adipócitos Brancos/patologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Ácidos Aminoisobutíricos/sangue , Animais , Doenças Cardiovasculares/patologia , Diferenciação Celular/efeitos dos fármacos , Exercício Físico , Regulação da Expressão Gênica/efeitos dos fármacos , Teste de Tolerância a Glucose , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/efeitos dos fármacos , Doenças Metabólicas/patologia , Camundongos , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Oxirredução/efeitos dos fármacos , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fenótipo , Condicionamento Físico Animal , Fatores de Risco , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
8.
Nat Cell Biol ; 15(6): 568-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23728463

RESUMO

Identification and characterization of a third type of adipocyte known as brite (brown-in-white) adipocytes has drawn considerable attention, as these cells are thought to regulate energy expenditure and may help combat obesity. Remarkably, white adipocytes can adopt the characteristics of brite adipocytes following cold stimulation, and this process is reversible in vivo.


Assuntos
Adipócitos Marrons/fisiologia , Adipócitos Brancos/citologia , Adipócitos Brancos/fisiologia , Metabolismo Energético , Animais
9.
Cell Stem Cell ; 12(2): 238-51, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23246482

RESUMO

Transcription activator-like effector nucleases (TALENs) are a new class of engineered nucleases that are easier to design to cleave at desired sites in a genome than previous types of nucleases. We report here the use of TALENs to rapidly and efficiently generate mutant alleles of 15 genes in cultured somatic cells or human pluripotent stem cells, the latter for which we differentiated both the targeted lines and isogenic control lines into various metabolic cell types. We demonstrate cell-autonomous phenotypes directly linked to disease-dyslipidemia, insulin resistance, hypoglycemia, lipodystrophy, motor-neuron death, and hepatitis C infection. We found little evidence of TALEN off-target effects, but each clonal line nevertheless harbors a significant number of unique mutations. Given the speed and ease with which we were able to derive and characterize these cell lines, we anticipate TALEN-mediated genome editing of human cells becoming a mainstay for the investigation of human biology and disease.


Assuntos
Desoxirribonucleases/genética , Células-Tronco/enzimologia , Alelos , Genoma Humano/genética , Humanos , Mutação
10.
Nat Cell Biol ; 14(2): 209-19, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22246346

RESUMO

The utility of human pluripotent stem cells is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into white or brown adipocytes. We found that inducible expression of PPARG2 alone or combined with CEBPB and/or PRDM16 in mesenchymal progenitor cells derived from pluripotent stem cells programmed their development towards a white or brown adipocyte cell fate with efficiencies of 85%-90%. These adipocytes retained their identity independent of transgene expression, could be maintained in culture for several weeks, expressed mature markers and had mature functional properties such as lipid catabolism and insulin-responsiveness. When transplanted into mice, the programmed cells gave rise to ectopic fat pads with the morphological and functional characteristics of white or brown adipose tissue. These results indicate that the cells could be used to faithfully model human disease.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Diferenciação Celular/genética , Células-Tronco Pluripotentes/metabolismo , Transgenes/genética , Células 3T3 , Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células Cultivadas , Análise por Conglomerados , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Imuno-Histoquímica , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , PPAR gama/genética , PPAR gama/metabolismo , Células-Tronco Pluripotentes/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transplante Heterólogo
11.
PLoS One ; 6(12): e27495, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194785

RESUMO

Human pluripotent stem cells (hPSC) hold great promise as models for understanding disease and as a source of cells for transplantation therapies. However, the lack of simple, robust and efficient culture methods remains a significant obstacle for realizing the utility of hPSCs. Here we describe a platform for the culture of hPSCs that 1) allows for dissociation and replating of single cells, 2) significantly increases viability and replating efficiency, 3) improves freeze/thaw viability 4) improves cloning efficiency and 5) colony size variation. When combined with standard methodologies for genetic manipulation, we found that the enhanced culture platform allowed for lentiviral transduction rates of up to 95% and electroporation efficiencies of up to 25%, with a significant increase in the total number of antibiotic-selected colonies for screening for homologous recombination. We further demonstrated the utility of the enhanced culture platform by successfully targeting the ISL1 locus. We conclude that many of the difficulties associated with culturing and genetic manipulation of hPSCs can be addressed with optimized culture conditions, and we suggest that the use of the enhanced culture platform could greatly improve the ease of handling and general utility of hPSCs.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas Genéticas , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos
13.
Mol Endocrinol ; 22(6): 1345-56, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18323469

RESUMO

Liver receptor homolog 1 (LRH-1), an orphan nuclear receptor, is highly expressed in liver and intestine, where it is implicated in the regulation of cholesterol, bile acid, and steroid hormone homeostasis. Among the proposed LRH-1 target genes in liver are those encoding cholesterol 7alpha-hydroxylase (CYP7A1) and sterol 12alpha-hydroxylase (CYP8B1), which catalyze key steps in bile acid synthesis. In vitro studies suggest that LRH-1 may be involved both in stimulating basal CYP7A1 and CYP8B1 transcription and in repressing their expression as part of the nuclear bile acid receptor [farnesoid X receptor (FXR)]-small heterodimer partner signaling cascade, which culminates in small heterodimer partner binding to LRH-1 to repress gene transcription. However, in vivo analysis of LRH-1 actions has been hampered by the embryonic lethality of Lrh-1 knockout mice. To overcome this obstacle, mice were generated in which Lrh-1 was selectively disrupted in either hepatocytes or intestinal epithelium. LRH-1 deficiency in either tissue changed mRNA levels of genes involved in cholesterol and bile acid homeostasis. Surprisingly, LRH-1 deficiency in hepatocytes had no significant effect on basal Cyp7a1 expression or its repression by FXR. Whereas Cyp8b1 repression by FXR was also intact in mice deficient for LRH-1 in hepatocytes, basal CYP8B1 mRNA levels were significantly decreased, and there were corresponding changes in the composition of the bile acid pool. Taken together, these data reveal a broad role for LRH-1 in regulating bile acid homeostasis but demonstrate that LRH-1 is either not involved in the feedback regulation of bile acid synthesis or is compensated for by other factors.


Assuntos
Ácidos e Sais Biliares/metabolismo , Retroalimentação Fisiológica/genética , Homeostase/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Células Cultivadas , Clonagem Molecular , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica/fisiologia , Hepatócitos/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
14.
Yonsei Med J ; 47(3): 437-9, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16807997

RESUMO

A 29-year-old woman presented with bloody diarrhea, abdominal pain, hemolytic anemia, thrombocytopenia, and acute renal failure. She was diagnosed with Escherichia coli O104:H4-associated hemolytic-uremic syndrome (HUS) and treated with plasmapheresis and hemodialysis for 3 weeks. She recovered without sequelae. To the best of our knowledge, this is the first report of Escherichia coli O104:H4-associated HUS in Korea. We recommend that Escherichia coli O104:H4, as well as the more common O157:H7, be considered in the diagnosis of bloody diarrhea-associated HUS.


Assuntos
Infecções por Escherichia coli/complicações , Escherichia coli/classificação , Síndrome Hemolítico-Urêmica/microbiologia , Adulto , Feminino , Humanos
15.
Proc Natl Acad Sci U S A ; 103(10): 3920-5, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16473946

RESUMO

Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow.


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Colestanotriol 26-Mono-Oxigenase , Proteínas de Ligação a DNA/agonistas , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestino Delgado/patologia , Isoxazóis/farmacologia , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Esteroide Hidroxilases/deficiência , Esteroide Hidroxilases/genética , Fatores de Transcrição/agonistas , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
16.
J Biol Chem ; 279(9): 7826-31, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14681216

RESUMO

WNK1 belongs to a unique protein kinase family that lacks the catalytic lysine in its normal position. Mutations in human WNK1 and WNK4 have been implicated in causing a familial form of hypertension. Here we report that overexpression of WNK1 led to increased activity of cotransfected ERK5 in HEK293 cells. ERK5 activation was blocked by the MEK5 inhibitor U0126 and expression of a dominant negative MEK5 mutant. Expression of dominant negative mutants of MEKK2 and MEKK3 also blocked activation of ERK5 by WNK1. Moreover, both MEKK2 and MEKK3 coimmunoprecipitated with endogenous WNK1 from cell lysates. WNK1 phosphorylated both MEKK2 and -3 in vitro, and MEKK3 was activated by WNK1 in 293 cells. Finally, ERK5 activation by epidermal growth factor was attenuated by suppression of WNK1 expression using small interfering RNA. Taken together, these results place WNK1 in the ERK5 MAP kinase pathway upstream of MEKK2/3.


Assuntos
MAP Quinase Quinase Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Butadienos/farmacologia , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Expressão Gênica , Células HeLa , Humanos , Técnicas de Imunoadsorção , Peptídeos e Proteínas de Sinalização Intracelular , MAP Quinase Quinase 5 , MAP Quinase Quinase Quinase 2 , MAP Quinase Quinase Quinase 3 , MAP Quinase Quinase Quinases/análise , Antígenos de Histocompatibilidade Menor , Proteína Quinase 7 Ativada por Mitógeno , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Mutagênese Sítio-Dirigida , Nitrilas/farmacologia , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes , Transfecção , Proteína Quinase 1 Deficiente de Lisina WNK
17.
Korean J Intern Med ; 17(2): 114-21, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12164088

RESUMO

BACKGROUND: Patients on continuous ambulatory peritoneal dialysis (CAPD) have increased risk of low-turnover bone disease and relative hypoparathyroidism. Recently, it has been believed that magnesium plays an important role in regulating secretion of parathyroid hormone (PTH). The aim of this study was to evaluate the relationship between serum PTH and serum magnesium as a factor increasing the frequency of relative hypoparathyroidism. METHODS: We analyzed the data of 56 patients who had been on CAPD for more than 6 months without any significant problems. No patient had been previously treated with vitamin D or aluminum hydroxide. The patients had used peritoneal dialysate with the magnesium concentration of 0.5 mEq/L. Biochemical parameters, such as BUN, creatinine, alkaline phosphatase bony isoenzyme, total protein, albumin, total calcium, ionized calcium and intact parathyroid hormone level were measured. RESULTS: The mean serum magnesium level was 1.99 +/- 0.36 mEq/L. Among total 56 patients, 15 patients (26.8%) showed hypermagnesemia (serum magnesium > 2.2 mEq/L) and 5 patients (8.9%) showed hypomagnesemia (serum magnesium < 1.6 mEq/L). Among all 56 patients, serum iPTH (intact PTH) level was not correlated with serum magnesium level. However, it was inversely correlated with serum total calcium and ionized calcium levels, respectively (r = -0.365, p = 0.006; r = -0.515 p < 0.001). Among 49 patients whose serum iPTH level was less than 300 pg/mL, serum iPTH level was inversely correlated with serum magnesium level (r = -0.295, p = 0.039) and inversely correlated with serum total calcium and ionized calcium levels, respectively (r = -0.546, p < 0.001; r = -0.572 p < 0.001). Among 49 patients whose serum iPTH level was less than 300 pg/mL, lower iPTH group (serum iPTH < 120 pg/mL) showed higher serum magnesium level (p = 0.037), higher serum total calcium level (p < 0.001) and lower bone isoenzyme of alkaline phosphatase level (p < 0.001) than those of higher iPTH group (120 pg/mL < or = serum iPTH < 300 pg/mL). CONCLUSION: Among the CAPD patients whose serum iPTH level was less than 300 pg/mL, there was a significant inverse correlation between serum iPTH level and serum magnesium level. This study indicates that not only serum calcium level but also serum magnesium level are important in the regulation of serum iPTH levels of CAPD patients who have been dialyzed by low-magnesium peritoneal dialysate.


Assuntos
Magnésio/sangue , Hormônio Paratireóideo/sangue , Diálise Peritoneal Ambulatorial Contínua/efeitos adversos , Adulto , Fosfatase Alcalina/sangue , Cálcio/sangue , Distúrbio Mineral e Ósseo na Doença Renal Crônica/etiologia , Soluções para Diálise , Feminino , Humanos , Falência Renal Crônica/complicações , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Diálise Peritoneal Ambulatorial Contínua/métodos , Fosfatos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...