Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Phys Chem B ; 114(9): 3254-8, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20163090

RESUMO

A CH(4)-loaded hydroquinone (HQ) clathrate was synthesized via a gas-phase reaction using the alpha-form of crystalline HQ and CH(4) gas at 12 MPa and room temperature. Solid-state (13)C cross-polarization/magic angle spinning (CP/MAS) NMR and Raman spectroscopic measurements confirm the incorporation of CH(4) molecules into the cages of the HQ clathrate framework. The chemical analysis indicates that about 69% of the cages are filled by CH(4) molecules, that is, 0.69 CH(4) per three HQ molecules. Rietveld refinement using synchrotron X-ray powder diffraction (XRD) data shows that the CH(4)-loaded HQ clathrate adopts the beta-form of HQ clathrate in a hexagonal space group R3 with lattice parameters of a = 16.6191 A and c = 5.5038 A. Time-resolved synchrotron XRD and quadrupole mass spectroscopic measurements show that the CH(4)-loaded HQ clathrate is stable up to 368 K and gradually transforms to the alpha-form by releasing the confined CH(4) gases between 368-378 K. Using solid-state (13)C CP/MAS NMR, the reaction kinetics between the alpha-form HQ and CH(4) gas is qualitatively described in terms of the particle size of the crystalline HQ.

3.
Chemphyschem ; 10(2): 352-5, 2009 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19067442

RESUMO

Easy come, easy go: Hydroquinone forms a channel structure of cages with hydrogen-bonded hexagons. These may provide an ideal route for the fast inclusion and facile release of hydrogen molecules (see figure), which can lead to reversible hydrogen storage under mild conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...