Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 10(37): e0062021, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528816

RESUMO

Erwinia chrysanthemi S3-1 is a bacterial soft rot pathogen of the white-flowered calla lily. The complete genome sequence of the strain was determined and used to reclassify the strain as Dickeya dadantii subsp. dieffenbachiae. The sequence will be useful to study plant host-driven speciation in strains of D. dadantii.

2.
Phytopathology ; 110(5): 981-988, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32167850

RESUMO

Xanthomonads were detected by using the Xan-D(CCF) medium from the brassica seeds, and their pathogenicity was determined by plant inoculation tests. It was found that some seed lots were infested with Xanthomonas campestris pv. campestris, some with X. campestris pv. raphani, and some with nonpathogenic xanthomonads. The nonpathogenic xanthomonad strains were identified as X. campestris, and the multilocus sequence analysis showed that the nonpathogenic X. campestris strains were grouped together with pathogenic X. campestris, but not with nonpathogenic strains of X. arboricola. In addition, all isolated X. campestris pv. campestris and X. campestris pv. raphani strains were positive in the hrpF-PCR, but the nonpathogenic strains were negative. It was further found that nonpathogenic X. campestris strain nE1 does not contain the entire pathogenicity island (hrp gene cluster; type III secretion system) and all type III effector protein genes based on the whole genome sequence analyses. The nonpathogenic X. campestris strain nE1 could acquire the entire pathogenicity island from the endemic X. campestris pv. campestris and X. campestris pv. raphani strains by conjugation, but type III effector genes were not cotransferred. The studies showed that the nonpathogenic X. campestris strains indeed exist on the brassica seeds, but it could be differentiated by the PCR assays on the hrp and type III effector genes. Nevertheless, the nonpathogenic X. campestris strains cannot be ignored because they may be potential gene resources to increase genetic diversity in the endemic pathogenic X. campestris pv. campestris and X. campestris pv. raphani strains.


Assuntos
Brassica , Xanthomonas campestris , Proteínas de Bactérias , Filogenia , Doenças das Plantas , Sementes
3.
Appl Environ Microbiol ; 81(19): 6839-49, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26209665

RESUMO

Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli.


Assuntos
Anticorpos Monoclonais/farmacologia , Potyvirus/efeitos dos fármacos , Anticorpos de Cadeia Única/farmacologia , Sequência de Aminoácidos , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Western Blotting , Ensaio de Imunoadsorção Enzimática , Dados de Sequência Molecular , Potyvirus/fisiologia , Alinhamento de Sequência , Anticorpos de Cadeia Única/análise , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/imunologia
4.
Appl Environ Microbiol ; 75(21): 6831-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19749062

RESUMO

A xanthomonad differential medium (designated Xan-D medium) was developed, on which streaks and colonies of xanthomonads, including 13 species of the genus Xanthomonas, turned wet-shining yellow-green and were surrounded with a smaller milky zone and a bigger clear zone in 3 to 4 days. The characteristics could easily be differentiated from those of yellow nonxanthomonads and other bacteria. The mechanism of color change and formation of a milky zone on the medium are mainly due to the Tween 80 hydrolytic capacity of xanthomonads. The gene, estA, responsible for Tween 80 hydrolysis was cloned and expressed in Escherichia coli, which acquired a capacity to hydrolyze Tween 80 and could turn green and form a milky zone on the Xan-D medium. The nucleotide sequence of estA is highly conserved in the xanthomonads, and the sequence was used to design a specific PCR primer set. The PCR amplification using the primer set amplified a 777-bp specific DNA fragment for all xanthomonad strains tested. The Xan-D medium was used to isolate and differentiate Xanthomonas campestris pv. campestris from naturally infected cabbages with black rot symptoms for a rapid diagnosis. All isolated X. campestris pv. campestris strains developed characteristic colonies and were positive in the PCR with the estA primer set. The Xan-D medium was further amended with antibiotics and successfully used for the detection of viable X. campestris pv. campestris cells from plant seeds. Although some yellow nonxanthomonads and other saprophytic bacteria from plant seeds could still grow on the medium, they did not interfere with the color development of X. campestris pv. campestris. However, Stenotrophomonas maltophilia, which is closely related to xanthomonads, existing in a seed lot could also develop yellow-green color but had different colony morphology and was negative in the PCR with the estA primer set. Accordingly, the combination of the Xan-D medium with the estA-specific PCR is a useful and reliable method for the isolation and detection of viable xanthomonad cells from plant materials.


Assuntos
Técnicas Bacteriológicas/métodos , Meios de Cultura/química , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Xanthomonas/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brassica/microbiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Compostos Cromogênicos/metabolismo , Clonagem Molecular , Primers do DNA/genética , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Polissorbatos/metabolismo , Sensibilidade e Especificidade , Stenotrophomonas maltophilia/crescimento & desenvolvimento , Stenotrophomonas maltophilia/metabolismo , Xanthomonas/genética , Xanthomonas/crescimento & desenvolvimento , Xanthomonas/metabolismo
5.
Phytopathology ; 97(2): 195-201, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18944375

RESUMO

ABSTRACT Burkholderia cenocepacia (genomovar III of B. cepacia complex), the causal agent of banana finger-tip rot, is a common plant-associated bacterium but also an important opportunistic pathogen of humans. To better understand the nature of B. cenocepacia from banana, the genetic variation among B. cenocepacia isolates from various banana-growing regions in southern Taiwan was examined. Forty-four serial isolates recovered from diseased banana stigmata from three banana-growing regions during the periods ranging from 2002 to 2004 were investigated. All B. cenocepacia isolates picked from quinate-yeast extract tetracycline-polymyxin semiselective medium could cause onion maceration and were polymerase chain reaction (PCR) positive for bcscV, which is a type III secretion gene present in all members of the B. cepacia complex except B. cepacia (formerly genomovar I). Genetic diversity was assessed using recA PCR restriction fragment length polymorphism, recA nucleotide sequence analysis, and pulsed-field gel electrophoresis assays. The assays revealed the genetic variability among the isolates and also allowed us to trace the relationship among isolates. The isolates all were assigned to genomovar III and consisted of two groups, A and B, which corresponded to recA lineage IIIA and IIIB. The group B strains were separated into B1 and B2 subgroups and the B1 strains were further divided into distinct lineages. The B1 strains were the most frequently detected and occurred in all regions tested. There was no significant difference between strains from each subgroup in the virulence on banana fingers of cv. Cavendish. PCR assays were further used to determine whether B. cenocepacia from banana contained the cable pilus subunit gene (cblA), IS1356, and B. cepacia epidemic strain marker (BCESM), which are DNA markers associated with epidemic B. cepacia clinic strains. The results indicated that cblA and IS1356 were absent but the BCESM was found in all isolates. The present study revealed that banana is a natural reservoir of genetically diversified B. cenocepacia strains.

6.
J Microbiol Methods ; 64(2): 200-6, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15927293

RESUMO

A medium was developed for the isolation and differentiation of Erwinia chrysanthemi from other Erwinia spp. based on the production of blue-pigmented indigoidine. The medium, named NGM, consists of nutrient agar supplemented with 1% glycerol, that induces pigment production, and 2 mM MnCl2*4H2O, that further enhances color development. More than fifty E. chrysanthemi strains from six different plant hosts were tested. All tested strains of E. chrysanthemi grew well on the NGM medium, developing dark brownish to blue colonies easily distinguishable from other Erwinia spp. The results indicate that pigment production on the NGM medium is a very stable property and can be used as a phenotypic property to differentiate E. chrysanthemi from other Erwinia spp. In addition, a specific oligonucleotide primer set was designed for the detection of indC, which is involved in indigoidine biosynthesis. All E. chrysanthemi strains tested contained indC as determined by PCR amplification. No amplification was observed with other Erwinia spp. Thus, pigment production of E. chrysanthemi on the NGM medium is consistent with the existence of indC. The NGM medium was used to isolate and identify the causal agent of soft rot lesions of diseased Phalaenopsis orchids from three orchid cultivation areas in Taiwan. The causal agents of Phalaenopsis soft rot were all identified as E. chrysanthemi. The results indicate that the NGM medium is efficient in isolation and identification of E. chrysanthemi from plants with soft rot symptoms and can also be used for epidemiological studies.


Assuntos
Dickeya chrysanthemi/isolamento & purificação , Orchidaceae/microbiologia , Doenças das Plantas/microbiologia , Meios de Cultura/química , Meios de Cultura/metabolismo , Dickeya chrysanthemi/classificação , Dickeya chrysanthemi/metabolismo , Glicerol , Piperidonas/metabolismo , Sensibilidade e Especificidade , Especificidade da Espécie , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...