Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Trends Endocrinol Metab ; 35(4): 308-320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38103974

RESUMO

Mitochondrial quality control (MQC) mechanisms are required to maintain a functional proteome, which enables mitochondria to perform a myriad of important cellular functions from oxidative phosphorylation to numerous other metabolic pathways. Mitochondrial protein homeostasis begins with the import of over 1000 nuclear-encoded mitochondrial proteins and the synthesis of 13 mitochondrial DNA-encoded proteins. A network of chaperones and proteases helps to fold new proteins and degrade unnecessary, damaged, or misfolded proteins, whereas more extensive damage can be removed by mitochondrial-derived vesicles (MDVs) or mitochondrial autophagy (mitophagy). Here, focusing on mechanisms in mammalian cells, we review the importance of mitochondrial protein import as a sentinel of mitochondrial function that activates multiple MQC mechanisms when impaired.


Assuntos
Autofagia , Mitocôndrias , Animais , Humanos , Mitocôndrias/metabolismo , Mitofagia , Resposta a Proteínas não Dobradas , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mamíferos/metabolismo
2.
Preprint em Inglês | SciELO Preprints | ID: pps-7217

RESUMO

Mitochondrial quality control (MQC) mechanisms are required to maintain a functional proteome, which enables mitochondria to perform a myriad of important cellular functions from oxidative phosphorylation to numerous metabolic pathways. Mitochondrial protein homeostasis begins with the import of over 1000 nuclear-encoded mitochondrial proteins, and the synthesis of 13 mitochondrial DNA-encoded proteins. A network of chaperones and proteases helps to fold new proteins and degrade unnecessary, damaged or misfolded proteins. Meanwhile, more extensive damage can be removed by mitochondrial derived vesicles or mitochondrial autophagy (mitophagy). Here, we review the importance of mitochondrial protein import as a sentinel of mitochondrial function that activates multiple MQC mechanisms when impaired, with a focus on mechanisms in mammalian cells.

3.
Biochim Biophys Acta Mol Basis Dis ; 1865(11): 165536, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31442532

RESUMO

Mutations in FBXL4 (F-Box and Leucine rich repeat protein 4), a nuclear-encoded mitochondrial protein with an unknown function, cause mitochondrial DNA depletion syndrome. We report two siblings, from consanguineous parents, harbouring a previously uncharacterized homozygous variant in FBXL4 (c.1750 T > C; p.Cys584Arg). Both patients presented with encephalomyopathy, lactic acidosis and cardiac hypertrophy, which are reported features of FBXL4 impairment. Remarkably, dichloroacetate (DCA) administration to the younger sibling improved metabolic acidosis and reversed cardiac hypertrophy. Characterization of FBXL4 patient fibroblasts revealed severe bioenergetic defects, mtDNA depletion, fragmentation of mitochondrial networks, and abnormalities in mtDNA nucleoids. These phenotypes, observed with other pathogenic FBXL4 variants, confirm the pathogenicity of the p.Cys584Arg variant. Although treating FBXL4 fibroblasts with DCA improved extracellular acidification, in line with reduced lactate levels in patients, DCA treatment did not improve any of the other mitochondrial functions. Nonetheless, we highlight DCA as a potentially effective drug for the management of elevated lactate and cardiomyopathy in patients with pathogenic FBXL4 variants. Finally, as the exact mechanism through which FBXL4 mutations lead to mtDNA depletion was unknown, we tested the hypothesis that FBXL4 promotes mitochondrial fusion. Using a photo-activatable GFP fusion assay, we found reduced mitochondrial fusion rates in cells harbouring a pathogenic FBXL4 variant. Meanwhile, overexpression of wildtype FBXL4, but not the p.Cys584Arg variant, promoted mitochondrial hyperfusion. Thus, we have uncovered a novel function for FBXL4 in promoting mitochondrial fusion, providing important mechanistic insights into the pathogenic mechanism underlying FBXL4 dysfunction.


Assuntos
DNA Mitocondrial/genética , Proteínas F-Box/genética , Doenças Mitocondriais/genética , Dinâmica Mitocondrial , Mutação Puntual , Ubiquitina-Proteína Ligases/genética , Células Cultivadas , Feminino , Células HEK293 , Humanos , Lactente , Recém-Nascido , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Linhagem
4.
EBioMedicine ; 45: 379-392, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31231018

RESUMO

BACKGROUND: Peripheral neuropathies are often caused by disruption of genes responsible for myelination or axonal transport. In particular, impairment in mitochondrial fission and fusion are known causes of peripheral neuropathies. However, the causal mechanisms for peripheral neuropathy gene mutations are not always known. While loss of function mutations in MYH14 typically cause non-syndromic hearing loss, the recently described R941L mutation in MYH14, encoding the non-muscle myosin protein isoform NMIIC, leads to a complex clinical presentation with an unexplained peripheral neuropathy phenotype. METHODS: Confocal microscopy was used to examine mitochondrial dynamics in MYH14 patient fibroblast cells, as well as U2OS and M17 cells overexpressing NMIIC. The consequence of the R941L mutation on myosin activity was modeled in C. elegans. FINDINGS: We describe the third family carrying the R941L mutation in MYH14, and demonstrate that the R941L mutation impairs non-muscle myosin protein function. To better understand the molecular basis of the peripheral neuropathy phenotype associated with the R941L mutation, which has been hindered by the fact that NMIIC is largely uncharacterized, we have established a previously unrecognized biological role for NMIIC in mediating mitochondrial fission in human cells. Notably, the R941L mutation acts in a dominant-negative fashion to inhibit mitochondrial fission, especially in the cell periphery. In addition, we observed alterations to the organization of the mitochondrial genome. INTERPRETATION: As impairments in mitochondrial fission cause peripheral neuropathy, this insight into the function of NMIIC likely explains the peripheral neuropathy phenotype associated with the R941L mutation. FUND: This study was supported by the Alberta Children's Hospital Research Institute, the Canadian Institutes of Health Research and the Care4Rare Canada Consortium.


Assuntos
Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo II/genética , Doenças do Sistema Nervoso Periférico/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , DNA Mitocondrial/genética , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Microscopia Confocal , Mutação , Fosfatase de Miosina-de-Cadeia-Leve/genética , Linhagem , Doenças do Sistema Nervoso Periférico/patologia , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...