Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 93: 36-51, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156344

RESUMO

Obesity has been closely related to cancer progression, recurrence, metastasis, and treatment resistance. We aim to review recent progress in the knowledge on the obese macroenvironment and the generated adipose tumor microenvironment (TME) inducing lipid metabolic dysregulation and their influence on carcinogenic processes. Visceral white adipose tissue expansion during obesity exerts systemic or macroenvironmental effects on tumor initiation, growth, and invasion by promoting inflammation, hyperinsulinemia, growth-factor release, and dyslipidemia. The dynamic relationship between cancer and stromal cells of the obese adipose TME is critical for cancer cell survival and proliferation as well. Experimental evidence shows that secreted paracrine signals from cancer cells can induce lipolysis in cancer-associated adipocytes, causing them to release free fatty acids and acquire a fibroblast-like phenotype. Such adipocyte delipidation and phenotypic change is accompanied by an increased secretion of cytokines by cancer-associated adipocytes and tumor-associated macrophages in the TME. Mechanistically, the availability of adipose TME free fatty acids and tumorigenic cytokines concomitant with the activation of angiogenic processes creates an environment that favors a shift in the cancer cells toward an aggressive phenotype associated with increased invasiveness. We conclude that restoring the aberrant metabolic alterations in the host macroenvironment and in adipose TME of obese subjects would be a therapeutic option to prevent cancer development. Several dietary, lipid-based, and oral antidiabetic pharmacological therapies could potentially prevent tumorigenic processes associated with the dysregulated lipid metabolism closely linked to obesity.


Assuntos
Metabolismo dos Lipídeos , Neoplasias , Humanos , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Adipócitos/metabolismo , Obesidade/complicações , Citocinas/metabolismo , Neoplasias/metabolismo , Carcinogênese/metabolismo , Microambiente Tumoral
3.
Front Cardiovasc Med ; 9: 777822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237673

RESUMO

Atherosclerotic arterial plaques and malignant solid tumors contain macrophages, which participate in anaerobic metabolism, acidosis, and inflammatory processes inherent in the development of either disease. The tissue-resident macrophage populations originate from precursor cells derived from the yolk sac and from circulating bone marrow-derived monocytes. In the tissues, they differentiate into varying functional phenotypes in response to local microenvironmental stimulation. Broadly categorized, the macrophages are activated to polarize into proinflammatory M1 and anti-inflammatory M2 phenotypes; yet, noticeable plasticity allows them to dynamically shift between several distinct functional subtypes. In atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates within macrophages as cytoplasmic lipid droplets thereby generating macrophage foam cells, which are involved in all steps of atherosclerosis. The conversion of macrophages into foam cells may suppress the expression of given proinflammatory genes and thereby initiate their transcriptional reprogramming toward an anti-inflammatory phenotype. In this particular sense, foam cell formation can be considered anti-atherogenic. The tumor-associated macrophages (TAMs) may become polarized into anti-tumoral M1 and pro-tumoral M2 phenotypes. Mechanistically, the TAMs can regulate the survival and proliferation of the surrounding cancer cells and participate in various aspects of tumor formation, progression, and metastasis. The TAMs may accumulate lipids, but their type and their specific roles in tumorigenesis are still poorly understood. Here, we discuss how the phenotypic and functional plasticity of macrophages allows their multifunctional response to the distinct microenvironments in developing atherosclerotic lesions and in developing malignant tumors. We also discuss how the inflammatory reactions of the macrophages may influence the development of atherosclerotic plaques and malignant tumors, and highlight the potential therapeutic effects of targeting lipid-laden macrophages in either disease.

4.
Sci Rep ; 11(1): 4923, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649397

RESUMO

In atherosclerotic lesions, blood-derived monocytes differentiate into distinct macrophage subpopulations, and further into cholesterol-filled foam cells under a complex milieu of cytokines, which also contains macrophage-colony stimulating factor (M-CSF) and granulocyte-macrophage-colony stimulating factor (GM-CSF). Here we generated human macrophages in the presence of either M-CSF or GM-CSF to obtain M-MØ and GM-MØ, respectively. The macrophages were converted into cholesterol-loaded foam cells by incubating them with acetyl-LDL, and their atheroinflammatory gene expression profiles were then assessed. Compared with GM-MØ, the M-MØ expressed higher levels of CD36, SRA1, and ACAT1, and also exhibited a greater ability to take up acetyl-LDL, esterify cholesterol, and become converted to foam cells. M-MØ foam cells expressed higher levels of ABCA1 and ABCG1, and, correspondingly, exhibited higher rates of cholesterol efflux to apoA-I and HDL2. Cholesterol loading of M-MØ strongly suppressed the high baseline expression of CCL2, whereas in GM-MØ the low baseline expression CCL2 remained unchanged during cholesterol loading. The expression of TNFA, IL1B, and CXCL8 were reduced in LPS-activated macrophage foam cells of either subtype. In summary, cholesterol loading converged the CSF-dependent expression of key genes related to intracellular cholesterol balance and inflammation. These findings suggest that transformation of CSF-polarized macrophages into foam cells may reduce their atheroinflammatory potential in atherogenesis.


Assuntos
Colesterol/imunologia , Fatores Estimuladores de Colônias/imunologia , Macrófagos , Monócitos , Linfócitos T , Aterosclerose/imunologia , Células Cultivadas , Humanos , Inflamação/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Monócitos/citologia , Monócitos/imunologia , Cultura Primária de Células , Linfócitos T/citologia , Linfócitos T/imunologia
5.
Atherosclerosis ; 312: 1-7, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32942042

RESUMO

BACKGROUND AND AIMS: In focal areas of advanced human atherosclerotic lesions, the intimal fluid is acidic. An acidic medium impairs the ABCA1-mediated cholesterol efflux from macrophages, so tending to increase their content of free cholesterol, which is then available for esterification by the macrophage enzyme ACAT1. Here we investigated whether low extracellular pH would affect the activity of ACAT1. METHODS: - Human monocyte-derived macrophages were first incubated with acetyl-LDL at neutral and acidic conditions (pH 7.5, 6.5, and 5.5) to generate foam cells, and then the foam cells were incubated with [3H]oleate-BSA complexes, and the formation of [3H]oleate-labeled cholesteryl esters was measured. ACAT1 activity was also measured in cell-free macrophage extracts. RESULTS: - In acidic media, ACAT1-dependent cholesteryl [3H]oleate generation became compromised in the developing foam cells and their content of free cholesterol increased. In line with this finding, ACAT1 activity in the soluble cell-free fraction derived from macrophage foam cells peaked at pH 7, and gradually decreased under acidic pH with a rapid drop below pH 6.5. Incubation of macrophages under progressively more acidic conditions (until pH 5.5) lowered the cytosolic pH of macrophages (down to pH 6.0). Such intracellular acidification did not affect macrophage gene expression of ACAT1 or the neutral CEH. CONCLUSIONS: Exposure of human macrophage foam cells to acidic conditions lowers their intracellular pH with simultaneous decrease in ACAT1 activity. This reduces cholesterol esterification and thus leads to accumulation of potentially toxic levels of free cholesterol, a contributing factor to macrophage foam cell death.


Assuntos
Colesterol , Células Espumosas , Acetil-CoA C-Acetiltransferase , Ésteres do Colesterol , Humanos , Concentração de Íons de Hidrogênio , Macrófagos
6.
Circ Res ; 127(6): 778-792, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32495699

RESUMO

RATIONALE: The HDL (high-density lipoprotein)-mediated stimulation of cellular cholesterol efflux initiates macrophage-specific reverse cholesterol transport (m-RCT), which ends in the fecal excretion of macrophage-derived unesterified cholesterol (UC). Early studies established that LDL (low-density lipoprotein) particles could act as efficient intermediate acceptors of cellular-derived UC, thereby preventing the saturation of HDL particles and facilitating their cholesterol efflux capacity. However, the capacity of LDL to act as a plasma cholesterol reservoir and its potential impact in supporting the m-RCT pathway in vivo both remain unknown. OBJECTIVE: We investigated LDL contributions to the m-RCT pathway in hypercholesterolemic mice. METHODS AND RESULTS: Macrophage cholesterol efflux induced in vitro by LDL added to the culture media either alone or together with HDL or ex vivo by plasma derived from subjects with familial hypercholesterolemia was assessed. In vivo, m-RCT was evaluated in mouse models of hypercholesterolemia that were naturally deficient in CETP (cholesteryl ester transfer protein) and fed a Western-type diet. LDL induced the efflux of radiolabeled UC from cultured macrophages, and, in the simultaneous presence of HDL, a rapid transfer of the radiolabeled UC from HDL to LDL occurred. However, LDL did not exert a synergistic effect on HDL cholesterol efflux capacity in the familial hypercholesterolemia plasma. The m-RCT rates of the LDLr (LDL receptor)-KO (knockout), LDLr-KO/APOB100, and PCSK9 (proprotein convertase subtilisin/kexin type 9)-overexpressing mice were all significantly reduced relative to the wild-type mice. In contrast, m-RCT remained unchanged in HAPOB100 Tg (human APOB100 transgenic) mice with fully functional LDLr, despite increased levels of plasma APO (apolipoprotein)-B-containing lipoproteins. CONCLUSIONS: Hepatic LDLr plays a critical role in the flow of macrophage-derived UC to feces, while the plasma increase of APOB-containing lipoproteins is unable to stimulate m-RCT. The results indicate that, besides the major HDL-dependent m-RCT pathway via SR-BI (scavenger receptor class B type 1) to the liver, a CETP-independent m-RCT path exists, in which LDL mediates the transfer of cholesterol from macrophages to feces. Graphical Abstract: A graphical abstract is available for this article.


Assuntos
HDL-Colesterol/sangue , LDL-Colesterol/sangue , Hiperlipoproteinemia Tipo II/sangue , Fígado/metabolismo , Macrófagos/metabolismo , Receptores de LDL/metabolismo , Animais , Apolipoproteína B-100/sangue , Apolipoproteína B-100/genética , Transporte Biológico , Linhagem Celular , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Modelos Animais de Doenças , Fezes/química , Humanos , Hiperlipoproteinemia Tipo II/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Depuradores Classe B/metabolismo
7.
Curr Med Chem ; 26(37): 6704-6723, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31438826

RESUMO

Dietary phytosterols, which comprise plant sterols and stanols, reduce plasma Low-Density Lipoprotein-Cholesterol (LDL-C) levels when given 2 g/day. Since this dose has not been reported to cause health-related side effects in long-term human studies, food products containing these plant compounds are used as potential therapeutic dietary options to reduce LDL-C and cardiovascular disease risk. Several mechanisms have been proposed to explain the cholesterol-lowering action of phytosterols. They may compete with dietary and biliary cholesterol for micellar solubilization in the intestinal lumen, impairing intestinal cholesterol absorption. Recent evidence indicates that phytosterols may also regulate other pathways. Impaired intestinal cholesterol absorption is usually associated with reduced cholesterol transport to the liver, which may reduce the incorporation of cholesterol into Very-Low- Density Lipoprotein (VLDL) particles, thereby lowering the rate of VLDL assembly and secretion. Impaired liver VLDL production may reduce the rate of LDL production. On the other hand, significant evidence supports a role for plant sterols in the Transintestinal Cholesterol Excretion (TICE) pathway, although the exact mechanisms by which they promote the flow of cholesterol from the blood to enterocytes and the intestinal lumen remains unknown. Dietary phytosterols may also alter the conversion of bile acids into secondary bile acids, and may lower the bile acid hydrophobic/hydrophilic ratio, thereby reducing intestinal cholesterol absorption. This article reviews the progress to date in research on the molecular mechanisms underlying the cholesterol-lowering effects of phytosterols.


Assuntos
LDL-Colesterol/antagonistas & inibidores , Fitosteróis/farmacologia , Animais , Ácidos e Sais Biliares/antagonistas & inibidores , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , LDL-Colesterol/química , LDL-Colesterol/metabolismo , Suplementos Nutricionais , Humanos , Estrutura Molecular , Fitosteróis/administração & dosagem , Fitosteróis/química
8.
Lipids Health Dis ; 17(1): 285, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545366

RESUMO

BACKGROUND: The focus of studies on high-density lipoproteins (HDL) has shifted from HDL-cholesterol (HDL-C) to HDL function. We recently demonstrated that low USF1 expression in mice and humans associates with high plasma HDL-C and low triglyceride levels, as well as protection against obesity, insulin resistance, and atherosclerosis. Here, we studied the impact of USF1 deficiency on HDL functional capacity and macrophage atherogenic functions, including inflammation, cholesterol efflux, and cholesterol accumulation. METHODS: We used a congenic Usf1 deficient mice in C57Bl/6JRccHsd background and blood samples were collected to isolate HDL for structural and functional studies. Lentiviral preparations containing the USF1 silencing shRNA expression vector were used to silence USF1 in human THP-1 and Huh-7 cells. Cholesterol efflux from acetyl-LDL loaded THP-1 macrophages was measured using HDL and plasma as acceptors. Gene expression analysis from USF1 silenced peritoneal macrophages was carried out using Affymetrix protocols. RESULTS: We show that Usf1 deficiency not only increases HDL-C levels in vivo, consistent with elevated ABCA1 protein expression in hepatic cell lines, but also improves the functional capacity of HDL particles. HDL particles derived from Usf1 deficient mice remove cholesterol more efficiently from macrophages, attributed to their higher contents of phospholipids. Furthermore, silencing of USF1 in macrophages enhanced the cholesterol efflux capacity of these cells. These findings are consistent with reduced inflammatory burden of USF1 deficient macrophages, manifested by reduced secretion of pro-inflammatory cytokines MCP-1 and IL-1ß and protection against inflammation-induced macrophage cholesterol accumulation in a cell-autonomous manner. CONCLUSIONS: Our findings identify USF1 as a novel factor regulating HDL functionality, showing that USF1 inactivation boosts cholesterol efflux, reduces macrophage inflammation and attenuates macrophage cholesterol accumulation, linking improved macrophage cholesterol metabolism and inflammatory pathways to the antiatherogenic function of USF1 deficiency.


Assuntos
HDL-Colesterol/genética , Colesterol/genética , Lipoproteínas HDL/genética , Fatores Estimuladores Upstream/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Quimiocina CCL2/genética , Colesterol/sangue , Expressão Gênica/genética , Humanos , Inflamação/sangue , Inflamação/genética , Inflamação/patologia , Resistência à Insulina/genética , Lipoproteínas HDL/sangue , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/sangue , Obesidade/genética , Obesidade/patologia
9.
J Lipid Res ; 59(6): 945-957, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581158

RESUMO

ApoA-I, the main structural and functional protein of HDL particles, is cardioprotective, but also highly sensitive to proteolytic cleavage. Here, we investigated the effect of cardiac mast cell activation and ensuing chymase secretion on apoA-I degradation using isolated rat hearts in the Langendorff perfusion system. Cardiac mast cells were activated by injection of compound 48/80 into the coronary circulation or by low-flow myocardial ischemia, after which lipid-free apoA-I was injected and collected in the coronary effluent for cleavage analysis. Mast cell activation by 48/80 resulted in apoA-I cleavage at sites Tyr192 and Phe229, but hypoxic activation at Tyr192 only. In vitro, the proteolytic end-product of apoA-I with either rat or human chymase was the Tyr192-truncated fragment. This fragment, when compared with intact apoA-I, showed reduced ability to promote migration of cultured human coronary artery endothelial cells in a wound-healing assay. We propose that C-terminal truncation of apoA-I by chymase released from cardiac mast cells during ischemia impairs the ability of apoA-I to heal damaged endothelium in the ischemic myocardium.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Quimases/metabolismo , Mastócitos/citologia , Miocárdio/citologia , Proteólise , Tirosina , Animais , Hipóxia Celular , Movimento Celular , Células Endoteliais/citologia , Células Endoteliais/patologia , Feminino , Humanos , Mastócitos/enzimologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miocárdio/patologia , Ratos , Ratos Wistar
11.
Mol Nutr Food Res ; 61(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28296229

RESUMO

SCOPE: Previous studies have proposed that phytosterols activate liver X receptors (LXR) in the intestine, thereby reducing intestinal cholesterol absorption and promoting fecal cholesterol excretion. METHODS AND RESULTS: In the present study, we examined the effects of dietary phytosterol supplementation on intestinal cholesterol absorption and fecal neutral sterol excretion in LXRαß-deficient mice, and wild-type mice treated with synthetic high-affinity LXRαß agonists. LXRαß deficiency led to an induction of intestinal cholesterol absorption and liver cholesterol accumulation. Phytosterol feeding resulted in an approximately 40% reduction of intestinal cholesterol absorption both in wild-type and LXRαß-deficient mice, reduced dietary cholesterol accumulation in liver and promoted the excretion of fecal cholesterol-derived compounds. Furthermore, phytosterols produced additive inhibitory effects on cholesterol absorption in mice treated with LXRαß agonists. CONCLUSIONS: Our data confirm the effect of LXR in regulating intestinal cholesterol absorption and demonstrate that the cholesterol-lowering effects of phytosterols occur in an LXR-independent manner.


Assuntos
Colesterol/metabolismo , Absorção Intestinal/efeitos dos fármacos , Receptores X do Fígado/fisiologia , Fitosteróis/farmacologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
12.
J Neuropathol Exp Neurol ; 75(7): 689-99, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27283327

RESUMO

Saccular intracranial aneurysm (sIA) aneurysm causes intracranial hemorrhages that are associated with high mortality. Lipid accumulation and chronic inflammation occur in the sIA wall. A major mechanism for lipid clearance from arteries is adenosine triphosphate-binding cassette A1 (ABCA1)-mediated lipid efflux from foam cells to apolipoprotein A-I (apoA-I). We investigated the association of wall degeneration, inflammation, and lipid-related parameters in tissue samples of 16 unruptured and 20 ruptured sIAs using histology and immunohistochemistry. Intracellular lipid accumulation was associated with wall remodeling (p = 0.005) and rupture (p = 0.020). Foam cell formation was observed in smooth muscle cells, in addition to CD68- and CD163-positive macrophages. Macrophage infiltration correlated with intracellular lipid accumulation and apolipoproteins, including apoA-I. ApoA-I correlated with markers of lipid accumulation and wall degeneration (p = 0.01). ApoA-I-positive staining colocalized with ABCA1-positive cells particularly in sIAs with high number of smooth muscle cells (p = 0.003); absence of such colocalization was associated with wall degeneration (p = 0.017). Known clinical risk factors for sIA rupture correlated inversely with apoA-I. We conclude that lipid accumulation associates with sIA wall degeneration and risk of rupture, possibly via formation of foam cells and subsequent loss of mural cells. Reduced removal of lipids from the sIA wall via ABCA1-apoA-I pathway may contribute to this process.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Aneurisma Roto/metabolismo , Apolipoproteína A-I/metabolismo , Células Espumosas/metabolismo , Aneurisma Intracraniano/metabolismo , Produto da Acumulação Lipídica/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Aneurisma Roto/patologia , Células Espumosas/patologia , Humanos , Aneurisma Intracraniano/patologia , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia
13.
Atherosclerosis ; 248: 170-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27038418

RESUMO

BACKGROUND: In atherosclerotic lesions, cholesterol-laden macrophage foam cells are formed and exposed to M1- and M2-polarizing factors. However, the effects of the polarizing factors on the proinflammatory and the anti-inflammatory potential of foam cells are not known. OBJECTIVE: To investigate the effects of M1- and M2-polarizing factors on the expression of pro- and anti-inflammatory genes in cultured human macrophage foam cells. METHODS AND RESULTS: Human monocytes were differentiated into macrophages in the presence of M-CSF, and then converted into cholesterol-loaded foam cells by incubation with acetylated LDL. The generated macrophages and foam cells were polarized into the M1 phenotype by classical activation with LPS and IFN-γ, or into the M2 phenotype by alternative activation with IL-4. When subjected to the M1-polarizing factors, the macrophages responded by typical upregulation of several key proinflammatory genes (TNFA, IL1B, CXCL8, CCL19, and COX2), while the anti-inflammatory genes (MRC1, CCL17, and IL10) displayed variable responses. The foam cells, again, showed a weaker response to the M1-polarizing factors, as indicated by reduced upregulation of the proinflammatory genes, reduced secretion of TNF-α, and a trend towards lower NF-κB activity. When subjected to alternative M2 polarization, both macrophages and foam cells responded by a typical upregulation of the anti-inflammatory genes, which was of equal magnitude in both cell types. CONCLUSIONS: Conversion of cultured human macrophages into foam cells suppresses their proinflammatory responses to M1-polarizing factors. Thus, in M1-polarizing microenvironments of atherosclerotic lesions, foam cell formation may locally weaken the macrophage-dependent inflammatory component of atherogenesis.


Assuntos
Células Espumosas/citologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Anti-Inflamatórios/química , Aterosclerose/metabolismo , Colesterol/química , Colesterol/metabolismo , Meios de Cultura Livres de Soro , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Interleucina-4/metabolismo , Lipopolissacarídeos/química , Macrófagos/metabolismo , NF-kappa B/metabolismo , Fenótipo , Regulação para Cima
14.
Biochim Biophys Acta ; 1861(7): 566-83, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26968096

RESUMO

Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.


Assuntos
Aterosclerose/metabolismo , HDL-Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Fígado/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Transporte Biológico , LDL-Colesterol/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Lipase/genética , Lipase/metabolismo , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Especificidade da Espécie
15.
Sci Transl Med ; 8(323): 323ra13, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26819196

RESUMO

USF1 (upstream stimulatory factor 1) is a transcription factor associated with familial combined hyperlipidemia and coronary artery disease in humans. However, whether USF1 is beneficial or detrimental to cardiometabolic health has not been addressed. By inactivating USF1 in mice, we demonstrate protection against diet-induced dyslipidemia, obesity, insulin resistance, hepatic steatosis, and atherosclerosis. The favorable plasma lipid profile, including increased high-density lipoprotein cholesterol and decreased triglycerides, was coupled with increased energy expenditure due to activation of brown adipose tissue (BAT). Usf1 inactivation directs triglycerides from the circulation to BAT for combustion via a lipoprotein lipase-dependent mechanism, thus enhancing plasma triglyceride clearance. Mice lacking Usf1 displayed increased BAT-facilitated, diet-induced thermogenesis with up-regulation of mitochondrial respiratory chain complexes, as well as increased BAT activity even at thermoneutrality and after BAT sympathectomy. A direct effect of USF1 on BAT activation was demonstrated by an amplified adrenergic response in brown adipocytes after Usf1 silencing, and by augmented norepinephrine-induced thermogenesis in mice lacking Usf1. In humans, individuals carrying SNP (single-nucleotide polymorphism) alleles that reduced USF1 mRNA expression also displayed a beneficial cardiometabolic profile, featuring improved insulin sensitivity, a favorable lipid profile, and reduced atherosclerosis. Our findings identify a new molecular link between lipid metabolism and energy expenditure, and point to the potential of USF1 as a therapeutic target for cardiometabolic disease.


Assuntos
Tecido Adiposo Marrom/metabolismo , Fatores Estimuladores Upstream/deficiência , Fatores Estimuladores Upstream/genética , Adulto , Idoso , Alelos , Animais , Aterosclerose/metabolismo , Glicemia/metabolismo , Carboidratos/química , Sistema Cardiovascular , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Estudos de Coortes , Feminino , Inativação Gênica , Glucose/metabolismo , Humanos , Insulina/sangue , Insulina/metabolismo , Lipídeos/química , Lipase Lipoproteica/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Masculino , Síndrome Metabólica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Consumo de Oxigênio , Fenótipo , Polimorfismo de Nucleotídeo Único , Termogênese , Triglicerídeos/sangue , Triglicerídeos/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 36(2): 274-84, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26681753

RESUMO

OBJECTIVE: Apolipoprotein A-I (apoA-I) has been shown to possess several atheroprotective functions, including inhibition of inflammation. Protease-secreting activated mast cells reside in human atherosclerotic lesions. Here we investigated the effects of the neutral proteases released by activated mast cells on the anti-inflammatory properties of apoA-I. APPROACH AND RESULTS: Activation of human mast cells triggered the release of granule-associated proteases chymase, tryptase, cathepsin G, carboxypeptidase A, and granzyme B. Among them, chymase cleaved apoA-I with the greatest efficiency and generated C-terminally truncated apoA-I, which failed to bind with high affinity to human coronary artery endothelial cells. In tumor necrosis factor-α-activated human coronary artery endothelial cells, the chymase-cleaved apoA-I was unable to suppress nuclear factor-κB-dependent upregulation of vascular cell adhesion molecule-1 (VCAM-1) and to block THP-1 cells from adhering to and transmigrating across the human coronary artery endothelial cells. Chymase-cleaved apoA-I also had an impaired ability to downregulate the expression of tumor necrosis factor-α, interleukin-1ß, interleukin-6, and interleukin-8 in lipopolysaccharide-activated GM-CSF (granulocyte-macrophage colony-stimulating factor)- and M-CSF (macrophage colony-stimulating factor)-differentiated human macrophage foam cells and to inhibit reactive oxygen species formation in PMA (phorbol 12-myristate 13-acetate)-activated human neutrophils. Importantly, chymase-cleaved apoA-I showed reduced ability to inhibit lipopolysaccharide-induced inflammation in vivo in mice. Treatment with chymase blocked the ability of the apoA-I mimetic peptide L-4F, but not of the protease-resistant D-4F, to inhibit proinflammatory gene expression in activated human coronary artery endothelial cells and macrophage foam cells and to prevent reactive oxygen species formation in activated neutrophils. CONCLUSIONS: The findings identify C-terminal cleavage of apoA-I by human mast cell chymase as a novel mechanism leading to loss of its anti-inflammatory functions. When targeting inflamed protease-rich atherosclerotic lesions with apoA-I, infusions of protease-resistant apoA-I might be the appropriate approach.


Assuntos
Apolipoproteína A-I/metabolismo , Aterosclerose/enzimologia , Quimases/metabolismo , Células Endoteliais/metabolismo , Inflamação/enzimologia , Mastócitos/enzimologia , Apolipoproteína A-I/farmacologia , Aterosclerose/imunologia , Aterosclerose/prevenção & controle , Adesão Celular , Linhagem Celular Tumoral , Colesterol/metabolismo , Técnicas de Cocultura , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Espumosas/imunologia , Células Espumosas/metabolismo , Humanos , Inflamação/imunologia , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , NF-kappa B/metabolismo , Ativação de Neutrófilo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peptídeos/farmacologia , Estrutura Terciária de Proteína , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Migração Transendotelial e Transepitelial , Molécula 1 de Adesão de Célula Vascular/metabolismo
17.
Methods Mol Biol ; 1339: 211-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26445792

RESUMO

Promotion of reverse cholesterol transport (RCT) is thought to be a major HDL-mediated mechanism for protecting against atherosclerosis. Preclinical studies support the concept that increasing cholesterol efflux from macrophages may confer atheroprotective benefits independently of the plasma HDL-cholesterol concentration. The application of the macrophage-to-feces RCT method in genetically engineered mice has provided evidence that this major HDL property correlates closely with changes in atherosclerosis susceptibility. This chapter provides details on the methodologies currently used to measure in vitro cholesterol efflux from macrophages or in vivo macrophage-specific RCT. The general principles and techniques described herein may be applied to measure the in vitro cholesterol efflux capacity of human serum in macrophage cultures and to evaluate the effect of different experimental pathophysiological conditions or the efficacy of different therapeutic strategies on the modulation of in vivo macrophage-RCT in mice.


Assuntos
Técnicas de Cultura de Células , Colesterol/metabolismo , Macrófagos/metabolismo , Animais , Transporte Biológico , Linhagem Celular , HDL-Colesterol/metabolismo , Fezes/química , Humanos , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Camundongos
18.
Curr Opin Lipidol ; 26(5): 362-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26339766

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to summarize evidence about the effects that mast cell mediators can exert on the cholesterol efflux-inducing function of high density lipoproteins (HDL). RECENT FINDINGS: Subendothelially located activated mast cells are present in inflamed tissue sites, in which macrophage foam cells are also present. Upon activation, mast cells degranulate and expel 2 major neutral proteases, chymase and tryptase, and the vasoactive compound histamine, all of which are bound to the heparin-proteoglycan matrix of the granules. In the extracellular fluid, the proteases remain heparin-bound and retain their activities, whereas histamine dissociates and diffuses away to reach the endothelium. The heparin-bound mast cell proteases avidly degrade lipid-poor HDL particles so preventing their ability to induce cholesterol efflux from macrophage foam cells. In contrast, histamine enhances the passage of circulating HDL through the vascular endothelium into interstitial fluids, so favoring HDL interaction with peripheral macrophage foam cells and accelerating initiation of macrophage-specific reverse cholesterol transport. SUMMARY: Mast cells exert various modulatory effects on HDL function. In this novel tissue cholesterol-regulating function, the functional balance of histamine and proteases, and the relative quantities of HDL particles in the affected microenvironment ultimately dictate the outcome of the multiple mast cell effects on tissue cholesterol content.


Assuntos
Aterosclerose/imunologia , Lipoproteínas HDL/metabolismo , Mastócitos/fisiologia , Animais , Aterosclerose/metabolismo , Permeabilidade Capilar , Colesterol/metabolismo , Humanos , Metabolismo dos Lipídeos , Proteólise
19.
Physiol Rep ; 3(5)2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25969465

RESUMO

Psychological stress is a risk factor for atherosclerosis, yet the pathophysiological mechanisms involved remain elusive. The transfer of cholesterol from macrophage foam cells to liver and feces (the macrophage-specific reverse cholesterol transport, m-RCT) is an important antiatherogenic pathway. Because exposure of mice to physical restraint, a model of psychological stress, increases serum levels of corticosterone, and as bile acid homeostasis is disrupted in glucocorticoid-treated animals, we investigated if chronic intermittent restraint stress would modify m-RCT by altering the enterohepatic circulation of bile acids. C57Bl/6J mice exposed to intermittent stress for 5 days exhibited increased transit through the large intestine and enhanced fecal bile acid excretion. Of the transcription factors and transporters that regulate bile acid homeostasis, the mRNA expression levels of the hepatic farnesoid X receptor (FXR), the bile salt export pump (BSEP), and the intestinal fibroblast growth factor 15 (FGF15) were reduced, whereas those of the ileal apical sodium-dependent bile acid transporter (ASBT), responsible for active bile acid absorption, remained unchanged. Neither did the hepatic expression of cholesterol 7α-hydroxylase (CYP7A1), the key enzyme regulating bile acid synthesis, change in the stressed mice. Evaluation of the functionality of the m-RCT pathway revealed increased fecal excretion of bile acids that had been synthesized from macrophage-derived cholesterol. Overall, our study reveals that chronic intermittent stress in mice accelerates m-RCT specifically by increasing fecal excretion of bile acids. This novel mechanism of m-RCT induction could have antiatherogenic potential under conditions of chronic stress.

20.
J Lipid Res ; 56(2): 241-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25473102

RESUMO

Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [(3)H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [(3)H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds.


Assuntos
HDL-Colesterol/sangue , Colesterol/metabolismo , Lipoproteínas HDL/sangue , Animais , Transporte Biológico/fisiologia , Bradicinina/metabolismo , Linhagem Celular , Células Espumosas/metabolismo , Histamina/metabolismo , Lipoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...