Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Sci Adv ; 10(24): eadn6331, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865451

RESUMO

Mucosal-associated invariant T (MAIT) cells are antimicrobial T cells abundant in the gut, but mechanisms for their migration into tissues during inflammation are poorly understood. Here, we used acute pediatric appendicitis (APA), a model of acute intestinal inflammation, to examine these migration mechanisms. MAIT cells were lower in numbers in circulation of patients with APA but were enriched in the inflamed appendix with increased production of proinflammatory cytokines. Using the patient-derived appendix organoid (PDAO) model, we found that circulating MAIT cells treated with inflammatory cytokines elevated in APA up-regulated chemokine receptors, including CCR1, CCR3, and CCR4. They exhibited enhanced infiltration of Escherichia coli-pulsed PDAO in a CCR1-, CCR2-, and CCR4-dependent manner. Close interactions of MAIT cells with infected organoids led to the PDAO structural destruction and death. These findings reveal a previously unidentified mechanism of MAIT cell tissue homing, their participation in tissue damage in APA, and their intricate relationship with mucosal tissues during acute intestinal inflammation in humans.


Assuntos
Apendicite , Inflamação , Células T Invariantes Associadas à Mucosa , Humanos , Apendicite/patologia , Apendicite/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Inflamação/patologia , Inflamação/imunologia , Inflamação/metabolismo , Citocinas/metabolismo , Doença Aguda , Ativação Linfocitária/imunologia , Organoides , Movimento Celular , Criança , Masculino , Feminino , Mucosa Intestinal/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Apêndice/patologia , Apêndice/imunologia
2.
J Immunol ; 211(4): 511-517, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549397

RESUMO

Mucosal-associated invariant T (MAIT) cells are unconventional T cells with innate-like antimicrobial responsiveness. MAIT cells are known for MR1 (MHC class I-related protein 1)-restricted recognition of microbial riboflavin metabolites giving them the capacity to respond to a broad range of microbes. However, recent progress has shown that MAIT cells can also respond to several viral infections in humans and in mouse models, ranging from HIV-1 and hepatitis viruses to influenza virus and SARS-CoV-2, in a primarily cognate Ag-independent manner. Depending on the disease context MAIT cells can provide direct or indirect antiviral protection for the host and may help recruit other immune cells, but they may also in some circumstances amplify inflammation and aggravate immunopathology. Furthermore, chronic viral infections are associated with varying degrees of functional and numerical MAIT cell impairment, suggesting secondary consequences for host defense. In this review, we summarize recent progress and highlight outstanding questions regarding the emerging role of MAIT cells in antiviral immunity.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Camundongos , Animais , Humanos , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antivirais/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo
3.
Mucosal Immunol ; 16(5): 740-752, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37353006

RESUMO

Mucosa-associated invariant T (MAIT) cells are the largest population of unconventional T cells in humans. These antimicrobial T cells are poised with rapid effector responses following recognition of the cognate riboflavin (vitamin B2)-like metabolite antigens derived from microbial riboflavin biosynthetic pathway. Presentation of this unique class of small molecule metabolite antigens is mediated by the highly evolutionarily conserved major histocompatibility complex class I-related protein. In humans, MAIT cells are widely found along the upper and lower gastrointestinal tracts owing to their high expression of chemokine receptors and homing molecules directing them to these tissue sites. In this review, we discuss recent findings regarding the roles MAIT cells play in various gastrointestinal bacterial infections, and how their roles appear to differ depending on the etiological agents and the anatomical location. We further discuss the potential mechanisms by which MAIT cells contribute to pathogen control, orchestrate adaptive immunity, as well as their potential contribution to inflammation and tissue damage during gastrointestinal bacterial infections, and the ensuing tissue repair following resolution. Finally, we propose and discuss the use of the emerging three-dimensional organoid technology to test different hypotheses regarding the role of MAIT cells in gastrointestinal bacterial infections, inflammation, and immunity.


Assuntos
Infecções Bacterianas , Células T Invariantes Associadas à Mucosa , Humanos , Antígenos de Histocompatibilidade Classe I/metabolismo , Bactérias , Riboflavina , Trato Gastrointestinal , Inflamação , Antígenos de Histocompatibilidade Menor/metabolismo
4.
J Med Virol ; 95(1): e28385, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478250

RESUMO

The global outbreak of the monkeypox virus (MPXV) highlights the need for rapid and cost-effective MPXV detection tools to effectively monitor and control the monkeypox disease. Herein, we demonstrated a portable CRISPR-Cas-based system for naked-eye detection of MPXV. The system harnesses the high selectivity of CRISPR-Cas12 and the isothermal nucleic acid amplification potential of recombinase polymerase amplification. It can detect both the current circulating MPXV clade and the original clades. We reached a limit of detection (LoD) of 22.4 aM (13.5 copies/µl) using a microtiter plate reader, while the visual LoD of the system is 75 aM (45 copies/µl) in a two-step assay, which is further reduced to 25 aM (15 copies/µl) in a one-pot system. We compared our results with quantitative polymerase chain reaction and obtained satisfactory consistency. For clinical application, we demonstrated a sensitive and precise visual detection method with attomolar sensitivity and a sample-to-answer time of 35 min.


Assuntos
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Sistemas CRISPR-Cas , Sequência de Bases , Mpox/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos
5.
Biosensors (Basel) ; 12(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36354493

RESUMO

Rapid and cost-effective diagnostic tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a critical and valuable weapon for the coronavirus disease 2019 (COVID-19) pandemic response. SARS-CoV-2 invasion is primarily mediated by human angiotensin-converting enzyme 2 (hACE2). Recent developments in ACE2-based SARS-CoV-2 detection modalities accentuate the potential of this natural host-virus interaction for developing point-of-care (POC) COVID-19 diagnostic systems. Although research on harnessing ACE2 for SARS-CoV-2 detection is in its infancy, some interesting biosensing devices have been developed, showing the commercial viability of this intriguing new approach. The exquisite performance of the reported ACE2-based COVID-19 biosensors provides opportunities for researchers to develop rapid detection tools suitable for virus detection at points of entry, workplaces, or congregate scenarios in order to effectively implement pandemic control and management plans. However, to be considered as an emerging approach, the rationale for ACE2-based biosensing needs to be critically and comprehensively surveyed and discussed. Herein, we review the recent status of ACE2-based detection methods, the signal transduction principles in ACE2 biosensors and the development trend in the future. We discuss the challenges to development of ACE2-biosensors and delineate prospects for their use, along with recommended solutions and suggestions.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Peptidil Dipeptidase A/fisiologia , Pandemias
6.
Front Immunol ; 13: 985385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341446

RESUMO

MAIT cells are persistently depleted and functionally exhausted in HIV-1-infected patients despite long-term combination antiretroviral therapy (cART). IL-7 treatment supports MAIT cell reconstitution in vivo HIV-1-infected individuals and rescues their functionality in vitro. Single-nucleotide polymorphisms (SNPs) of the IL-7RA gene modulate the levels of soluble(s)IL-7Rα (sCD127) levels and influence bioavailability of circulating IL-7. Here we evaluate the potential influence of IL-7RA polymorphisms on MAIT cell numbers and function in healthy control (HC) subjects and HIV-1-infected individuals on long-term cART. Our findings indicate that IL-7RA haplotype 2 (H2*T), defined as T-allele carriers at the tagging SNP rs6897932, affects the size of the peripheral blood MAIT cell pool, as well as their production of cytokines and cytolytic effector proteins in response to bacterial stimulation. H2*T carriers had lower sIL-7Rα levels and higher MAIT cell frequency with enhanced functionality linked to higher expression of MAIT cell-associated transcription factors. Despite an average of 7 years on suppressive cART, MAIT cell levels and function in HIV-1-infected individuals were still significantly lower than those of HC. Notably, we observed a significant correlation between MAIT cell levels and cART duration only in HIV-1-infected individuals carrying IL-7RA haplotype 2. Interestingly, treatment with sIL-7Rα in vitro suppressed IL-7-dependent MAIT cell proliferation and function following cognate stimulations. These observations suggest that sIL-7Rα levels may influence MAIT cell numbers and function in vivo by limiting IL-7 bioavailability to MAIT cells. Collectively, these observations suggest that IL-7RA polymorphisms may play a significant role in MAIT cell biology and influence MAIT cells recovery in HIV-1 infection. The potential links between IL7RA polymorphisms, MAIT cell immunobiology, and HIV-1 infection warrant further studies going forward.


Assuntos
Infecções por HIV , HIV-1 , Células T Invariantes Associadas à Mucosa , Humanos , Polimorfismo de Nucleotídeo Único , Interleucina-7/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
7.
J Immunol ; 208(5): 1170-1179, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35140134

RESUMO

Mucosa-associated invariant T (MAIT) cells recognize bacterial riboflavin metabolite Ags presented by MHC class Ib-related protein (MR1) and play important roles in immune control of microbes that synthesize riboflavin. This includes the pathobiont Staphylococcus aureus, which can also express a range of virulence factors, including the secreted toxin leukocidin ED (LukED). In this study, we found that human MAIT cells are hypersensitive to LukED-mediated lysis and lost on exposure to the toxin, leaving a T cell population devoid of MAIT cells. The cytolytic effect of LukED on MAIT cells was rapid and occurred at toxin concentrations lower than those required for toxicity against conventional T cells. Furthermore, this coincided with high MAIT cell expression of CCR5, and loss of these cells was efficiently inhibited by the CCR5 inhibitor maraviroc. Interestingly, exposure and preactivation of MAIT cells with IL-12 and IL-18, or activation via TCR triggering, partially protected from LukED toxicity. Furthermore, analysis of NK cells indicated that LukED targeted the mature cytotoxic CD57+ NK cell subset in a CCR5-independent manner. Overall, these results indicate that LukED efficiently eliminates immune cells that can respond rapidly to S. aureus in an innate fashion without the need for clonal expansion, and that MAIT cells are exceptionally vulnerable to this toxin. Thus, the findings support a model where LukED secretion may allow S. aureus to avoid recognition by the rapid cell-mediated responses mediated by MAIT cells and NK cells.


Assuntos
Evasão da Resposta Imune/imunologia , Células Matadoras Naturais/imunologia , Leucocidinas/metabolismo , Células T Invariantes Associadas à Mucosa/patologia , Receptores CCR5/metabolismo , Staphylococcus aureus/patogenicidade , Antagonistas dos Receptores CCR5/farmacologia , Linhagem Celular , Humanos , Subunidade p35 da Interleucina-12/metabolismo , Interleucina-18/metabolismo , Ativação Linfocitária/imunologia , Maraviroc/farmacologia , Células T Invariantes Associadas à Mucosa/imunologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/imunologia , Células THP-1 , Fatores de Virulência/metabolismo
8.
Viruses ; 14(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062356

RESUMO

Bats are reservoirs of a large number of viruses of global public health significance, including the ancestral virus for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the causative agent of coronavirus disease 2019 (COVID-19). Although bats are natural carriers of multiple pathogenic viruses, they rarely display signs of disease. Recent insights suggest that bats have a more balanced host defense and tolerance system to viral infections that may be linked to the evolutionary adaptation to powered flight. Therefore, a deeper understanding of bat immune system may provide intervention strategies to prevent zoonotic disease transmission and to identify new therapeutic targets. Similar to other eutherian mammals, bats have both innate and adaptive immune systems that have evolved to detect and respond to invading pathogens. Bridging these two systems are innate lymphocytes, which are highly abundant within circulation and barrier tissues. These cells share the characteristics of both innate and adaptive immune cells and are poised to mount rapid effector responses. They are ideally suited as the first line of defense against early stages of viral infections. Here, we will focus on the current knowledge of innate lymphocytes in bats, their function, and their potential role in host-pathogen interactions. Moreover, given that studies into bat immune systems are often hindered by a lack of bat-specific research tools, we will discuss strategies that may aid future research in bat immunity, including the potential use of organoid models to delineate the interplay between innate lymphocytes, bat viruses, and host tolerance.


Assuntos
Quirópteros/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Animais , Quirópteros/virologia , Reservatórios de Doenças/virologia , Humanos , Tolerância Imunológica , Viroses/imunologia , Viroses/transmissão , Vírus/patogenicidade
9.
J Infect Dis ; 224(4): 715-725, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34398238

RESUMO

BACKGROUND: Mucosal-associated invariant T (MAIT) cells constitute a subset of unconventional, MR1-restricted T cells involved in antimicrobial responses as well as inflammatory, allergic, and autoimmune diseases. Chronic infection and inflammatory disorders as well as immunodeficiencies are often associated with decline and/or dysfunction of MAIT cells. METHODS: We investigated the MAIT cells in patients with idiopathic CD4+ lymphocytopenia (ICL), a syndrome characterized by consistently low CD4 T-cell counts (<300 cell/µL) in the absence of HIV infection or other known immunodeficiency, and by susceptibility to certain opportunistic infections. RESULTS: The numbers, phenotype, and function of MAIT cells in peripheral blood were preserved in ICL patients compared to healthy controls. Administration of interleukin-7 (IL-7) to ICL patients expanded the CD8+ MAIT-cell subset, with maintained responsiveness and effector functions after IL-7 treatment. CONCLUSIONS: ICL patients maintain normal levels and function of MAIT cells, preserving some antibacterial responses despite the deficiency in CD4+ T cells. CLINICAL TRIALS REGISTRATION: NCT00867269.


Assuntos
Interleucina-7/uso terapêutico , Linfopenia , Células T Invariantes Associadas à Mucosa , Infecções por HIV , Humanos , Contagem de Linfócitos , Linfopenia/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Infecção Persistente
10.
STAR Protoc ; 2(2): 100487, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34041501

RESUMO

Bats harbor viruses of global public health significance. Understanding bat immune systems may provide intervention strategies to prevent zoonotic disease transmission and identify therapeutic targets. This protocol describes how to culture and expand pteropid bat unconventional T cells, restricted by the MHC-I-related protein 1 (MR1), an MHC-I-like protein. Using multicolor flow-cytometry-based techniques, we examine pteropid MR1T cell functionality, including proliferative capacity, cytotoxicity, and cytokine production. This protocol can be adapted to aid immunological research in other bat species. For complete details on the use and execution of this protocol, please refer to Leeansyah et al. (2020b).


Assuntos
Técnicas de Cultura de Células/métodos , Quirópteros , Citometria de Fluxo/métodos , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Linfócitos T/citologia , Animais , Células Cultivadas
11.
Cell Rep Med ; 2(3): 100220, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33763658

RESUMO

Hantaviruses are zoonotic RNA viruses that cause severe acute disease in humans. Infected individuals have strong inflammatory responses that likely cause immunopathology. Here, we studied the response of mucosal-associated invariant T (MAIT) cells in peripheral blood of individuals with hemorrhagic fever with renal syndrome (HFRS) caused by Puumala orthohantavirus, a hantavirus endemic in Europe. We show that MAIT cell levels decrease in the blood during HFRS and that residual MAIT cells are highly activated. This activation correlates with HFRS severity markers. In vitro activation of MAIT cells by hantavirus-exposed antigen-presenting cells is dependent on type I interferons (IFNs) and independent of interleukin-18 (IL-18). These findings highlight the role of type I IFNs in virus-driven MAIT cell activation and suggest a potential role of MAIT cells in the disease pathogenesis of viral infections.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Infecções por Hantavirus/imunologia , Febre Hemorrágica com Síndrome Renal/imunologia , Ativação Linfocitária , Células T Invariantes Associadas à Mucosa/imunologia , Virus Puumala/patogenicidade , Adulto , Anticorpos Antivirais/sangue , Células Apresentadoras de Antígenos/virologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Progressão da Doença , Células Endoteliais/imunologia , Células Endoteliais/virologia , Feminino , Regulação da Expressão Gênica , Infecções por Hantavirus/genética , Infecções por Hantavirus/patologia , Infecções por Hantavirus/virologia , Febre Hemorrágica com Síndrome Renal/genética , Febre Hemorrágica com Síndrome Renal/patologia , Febre Hemorrágica com Síndrome Renal/virologia , Humanos , Imunofenotipagem , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/virologia , Células T Invariantes Associadas à Mucosa/virologia , Virus Puumala/imunologia , Índice de Gravidade de Doença
12.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33561009

RESUMO

Progress in our understanding of MR1-restricted mucosa-associated invariant T (MAIT) cells has raised interest in harnessing these cells for immunotherapy. The innate-like response characteristics, abundance in the blood, donor-unrestricted nature, and tropism for tissues make MAIT cells suitable candidates for adoptive cell transfer therapies. However, reliable methods and tools to utilize MAIT cells in such approaches are lacking. Here, we established methodology for efficient expansion of human MAIT cells in culture with high purity and yield, while preserving their functional response toward their natural ligand and increasing their cytotoxic potential. The cultured MAIT cells retained their effector memory characteristics without signs of terminal differentiation and expressed a more diverse set of chemokine receptors, potentially widening their already broad tissue tropism. To investigate the potential of MAIT cells in a context outside their main role in controlling bacterial infection, we engineered cultured MAIT cells with a new TCR specificity to mediate effective antiviral HLA class I-restricted effector function. In summary, we developed robust and effective methodology for the expansion of human MAIT cells with enhanced cytolytic capacity and for their engineering with a new specificity. These findings form a basis for the development of MAIT cells as a platform for adoptive immunotherapy.


Assuntos
Antígenos HLA , Antígenos de Histocompatibilidade Classe I , Imunoterapia/métodos , Células T Invariantes Associadas à Mucosa , Receptores de Antígenos de Linfócitos T , Diferenciação Celular , Células Cultivadas , Humanos , Antígenos de Histocompatibilidade Menor , Receptores de Quimiocinas
13.
Crit Rev Immunol ; 41(5): 69-82, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36047323

RESUMO

Mucosa-associated invariant T (MAIT) cells are unconventional innate-like T cells that recognize microbial riboflavin-related metabolites presented by the evolutionarily conserved MHC class I-related (MR1) molecule. MAIT cells are abundant in circulation and mucosal tissues and are poised to mount rapid effector responses against diverse microbial organisms. Despite the absence of virally encoded riboflavin-related metabolite antigens, MAIT cells can respond to viral infections in an MR1-independent and cytokine-dependent manner. In chronic HIV-1 infection, MAIT cells are persistently depleted and functionally exhausted. Long-term effective combination antiretroviral therapy can only partially rescue MAIT cell numbers and dysfunction. Our understanding of the mechanisms underlying MAIT cell loss in HIV-1 infection is still incomplete, and to date, few effective strategies to recover their loss in humans are available. Here, we review current knowledge concerning the mechanisms of MAIT cell responses and loss in different stages of HIV-1 infection and how we may potentially develop strategies to restore these cells in the clinical setting. We further discuss novel strategies that may aid future investigations into MAIT cell immunobiology in HIV-1 infection, including the potential use of three-dimensional organoid models to dissect the mechanisms of MAIT cell depletion and to explore interventions that may restore their numbers and functionality.

14.
Trends Microbiol ; 29(6): 504-516, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33353796

RESUMO

Antimicrobial resistance is a serious threat to global public health as antibiotics are losing effectiveness due to rapid development of resistance. The human immune system facilitates control and clearance of resistant bacterial populations during the course of antimicrobial therapy. Here we review current knowledge of mucosa-associated invariant T (MAIT) cells, an arm of the immune system on the border between innate and adaptive, and their critical place in human antibacterial immunity. We propose that MAIT cells play important roles against antimicrobial-resistant infections through their capacity to directly clear multidrug-resistant bacteria and overcome mechanisms of antimicrobial resistance. Finally, we discuss outstanding questions pertinent to the possible advancement of host-directed therapy as an alternative intervention strategy for antimicrobial-resistant bacterial infections.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Animais , Humanos , Imunidade nas Mucosas/imunologia , Camundongos
15.
Viruses ; 12(12)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322496

RESUMO

CD161 expression on CD4+ T cells is associated with a Th17 functional phenotype, as well as with an innate capacity to respond to interleukin (IL)-12 and IL-18 without T cell receptor (TCR) stimulation. Chronic HIV-1 infection is associated with loss of the CD161+ CD4 T cell population, and non-human primate studies suggest that their depletion is associated with disease progression. However, the dynamics of the CD161+ CD4+ T cell population during acute HIV-1 infection remains unknown. In this study, we characterize peripheral blood CD161+ CD4+ T cells in detail, and examine how they are affected during the earliest stages of HIV-1 infection. Unbiased surface proteome screening and principal component analysis indicated that CD161+ CD4+ T cells are relatively phenotypically homogeneous between donors, and are intermediates between conventional CD4 T cells and innate-like T cells. In acute untreated HIV-1 infection, the circulating CD161+ CD4+ T cell population decreased in frequency, as did absolute cell counts starting from peak viral load, with elevated levels of activation and exhaustion markers expressed throughout acute HIV-1 infection. The capacity of these cells to respond to stimulation with IL-12 and IL-18 was also reduced. Early initiation of anti-retroviral treatment (ART) during acute HIV-1 infection restored the functionality of peripheral blood CD161+ CD4+ T cells, but not their frequency. In contrast, early ART initiation prevented the decline of colonic CD161+ CD4+ T cells that otherwise started during acute infection. Furthermore, loss of peripheral and colonic CD161+ CD4+ T cells in untreated infection was associated with levels of viral load. These results suggest that acute HIV-1 infection has profound effects on the CD161+ CD4+ T cell population that could not be completely prevented by the initiation of ART.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Adulto , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Biomarcadores , Biópsia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Humanos , Imunofenotipagem , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
16.
iScience ; 23(12): 101876, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33344919

RESUMO

Bats are reservoirs for a large number of viruses which have potential to cause major human disease outbreaks, including the current coronavirus disease 2019 (COVID-19) pandemic. Major efforts are underway to understand bat immune response to viruses, whereas much less is known about their immune responses to bacteria. In this study, MR1-restricted T (MR1T) cells were detected through the use of MR1 tetramers in circulation and tissues of Pteropus alecto (Pa) bats. Pa MR1T cells exhibited weak responses to MR1-presented microbial metabolites at resting state. However, following priming with MR1-presented agonist they proliferated, upregulated critical transcription factors and cytolytic proteins, and gained transient expression of Th1/17-related cytokines and antibacterial cytotoxicity. Collectively, these findings show that the Pa bat immune system encompasses an abundant and functionally conserved population of MR1T cells with mucosal-associated invariant T-like characteristics, suggesting that MR1 and MR1T cells also play a significant role in bat immune defense.

17.
PLoS Biol ; 18(6): e3000644, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511236

RESUMO

Mucosa-associated invariant T (MAIT) cells are abundant antimicrobial T cells in humans and recognize antigens derived from the microbial riboflavin biosynthetic pathway presented by the MHC-Ib-related protein (MR1). However, the mechanisms responsible for MAIT cell antimicrobial activity are not fully understood, and the efficacy of these mechanisms against antibiotic resistant bacteria has not been explored. Here, we show that MAIT cells mediate MR1-restricted antimicrobial activity against Escherichia coli clinical strains in a manner dependent on the activity of cytolytic proteins but independent of production of pro-inflammatory cytokines or induction of apoptosis in infected cells. The combined action of the pore-forming antimicrobial protein granulysin and the serine protease granzyme B released in response to T cell receptor (TCR)-mediated recognition of MR1-presented antigen is essential to mediate control against both cell-associated and free-living, extracellular forms of E. coli. Furthermore, MAIT cell-mediated bacterial control extends to multidrug-resistant E. coli primary clinical isolates additionally resistant to carbapenems, a class of last resort antibiotics. Notably, high levels of granulysin and granzyme B in the MAIT cell secretomes directly damage bacterial cells by increasing their permeability, rendering initially resistant E. coli susceptible to the bactericidal activity of carbapenems. These findings define the role of cytolytic effector proteins in MAIT cell-mediated antimicrobial activity and indicate that granulysin and granzyme B synergize to restore carbapenem bactericidal activity and overcome carbapenem resistance in E. coli.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Carbapenêmicos/farmacologia , Citotoxicidade Imunológica , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Granzimas/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Anti-Infecciosos/farmacologia , Carga Bacteriana/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Células HeLa , Humanos , Cinética
18.
J Immunol ; 205(1): 67-77, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32434941

RESUMO

Mucosa-associated invariant T (MAIT) cells are innate-like antimicrobial T cells recognizing a breadth of important pathogens via presentation of microbial riboflavin metabolite Ags by MHC class Ib-related (MR1) molecules. However, the interaction of human MAIT cells with adaptive immune responses and the role they may play in settings of vaccinology remain relatively little explored. In this study we investigated the interplay between MAIT cell-mediated antibacterial effector functions and the humoral immune response. IgG opsonization of the model microbe Escherichia coli with pooled human sera markedly enhanced the capacity of monocytic APC to stimulate MAIT cells. This effect included greater sensitivity of recognition and faster response kinetics, as well as a markedly higher polyfunctionality and magnitude of MAIT cell responses involving a range of effector functions. The boost of MAIT cell responses was dependent on strongly enhanced MR1-mediated Ag presentation via increased FcγR-mediated uptake and signaling primarily mediated by FcγRI. To investigate possible translation of this effect to a vaccine setting, sera from human subjects before and after vaccination with the 13-valent-conjugated Streptococcus pneumoniae vaccine were assessed in a MAIT cell activation assay. Interestingly, vaccine-induced Abs enhanced Ag presentation to MAIT cells, resulting in more potent effector responses. These findings indicate that enhancement of Ag presentation by IgG opsonization allows innate-like MAIT cells to mount a faster, stronger, and qualitatively more complex response and to function as an effector arm of vaccine-induced humoral adaptive antibacterial immunity.


Assuntos
Apresentação de Antígeno , Infecções por Escherichia coli/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Infecções Pneumocócicas/prevenção & controle , Adulto , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/metabolismo , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Imunidade Humoral , Imunogenicidade da Vacina , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/metabolismo , Tonsila Palatina/microbiologia , Fagocitose/imunologia , Infecções Pneumocócicas/sangue , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/imunologia , Cultura Primária de Células , Transdução de Sinais/imunologia , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/isolamento & purificação , Células THP-1
19.
Nat Commun ; 11(1): 272, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937782

RESUMO

Mucosa-associated invariant T (MAIT) cell loss in chronic HIV-1 infection is a significant insult to antimicrobial immune defenses. Here we investigate the response of MAIT cells during acute HIV-1 infection utilizing the RV217 cohort with paired longitudinal pre- and post-infection samples. MAIT cells are activated and expand in blood and mucosa coincident with peak HIV-1 viremia, in a manner associated with emerging microbial translocation. This is followed by a phase with elevated function as viral replication is controlled to a set-point level, and later by their functional decline at the onset of chronic infection. Interestingly, enhanced innate-like pathways and characteristics develop progressively in MAIT cells during infection, in parallel with TCR repertoire alterations. These findings delineate the dynamic MAIT cell response to acute HIV-1 infection, and show how the MAIT compartment initially responds and expands with enhanced function, followed by progressive reprogramming away from TCR-dependent antibacterial responses towards innate-like functionality.


Assuntos
Infecções por HIV/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Viremia/imunologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Estudos de Coortes , HIV-1/fisiologia , Humanos , Imunidade Inata/genética , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Ativação Linfocitária , Células T Invariantes Associadas à Mucosa/metabolismo , Células T Invariantes Associadas à Mucosa/microbiologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transcriptoma
20.
Methods Mol Biol ; 2098: 149-165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31792821

RESUMO

The mucosa-associated invariant T (MAIT) cells represent the most abundant population of antimicrobial T cells in humans. When encountering cells infected with riboflavin-producing bacteria, this innate-like T cell population rapidly release a plethora of pro-inflammatory cytokines, mediates antimicrobial activity, and kill infected cells. Here, we describe methodological approaches and protocols to measure their cytotoxicity and antimicrobial effector function using multi-color flow cytometry-based and standard microbiological techniques. We provide specific guidance on protocols and describe potential pitfalls for each of the presented methodologies. Finally, we discuss potential applications and current limitations of our approaches to the study of human MAIT cell antimicrobial properties.


Assuntos
Citotoxicidade Imunológica , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Biomarcadores , Técnicas de Cocultura , Escherichia coli/imunologia , Citometria de Fluxo , Células HeLa , Humanos , Imunofenotipagem/métodos , Contagem de Linfócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...