Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Nucl Med Mol Imaging ; 5(4): 379-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26269775

RESUMO

After initial therapy and total resection of glioblastoma multiforme (GBM), 80-90% of recurrences occur at the surgical margins. Insufficient sensitivity and specificity of current imaging techniques based on non-specific vascular imaging agents lead to delay in diagnosis of residual and/or recurrent disease. A tumor-specific imaging agent for GBM may improve detection of small residual disease in the post-operative period, and improve ability to distinguish tumor recurrence from its imaging mimics that can delay diagnosis. To this end, we developed an EGFR-targeted PET probe and assessed its ability to image EGFR WT (U87) and EGFRvIII (Gli36vIII) expressing GBMs in both murine intra-cranial xenografts and in a surgical-resection model. The developed imaging probe, (64)Cu-DOTAcetuximab-F(ab´)2, binds with a Kd of 11.2 nM to EGFR expressing GBM. (64)Cu-DOTA-cetuximab-F(ab´)2 specifically localized to intra-cranial tumor with a significant difference in SUVmean between tumor and contralateral brain for both Gli36vIII and U87 tumors (P<0.01 for both comparisons), with mean TBR of 22.5±0.7 for Gli36vIII tumors and 28.9±2.1 for U87 tumors (TBR±SEM). Tracer uptake by tumor was significantly inhibited by pre-injection with cetuximab (P<0.01 for both), with SUVmean reduced by 68% and 58% for Gli36vIII and U87 tumors, respectively. Surgical resection model PET-CT imaging demonstrates residual tumor and low nonspecific uptake in the resection site. We conclude that (64)Cu-DOTA-cetuximab-F(ab´)2 binds specifically to intracranial EGFR WT and EGFRvIII expressing GBM, demonstrates excellent TBR, and specifically images small residual tumor in a surgical model, suggesting future clinical utility in identifying true tumor recurrence.

2.
Clin Cancer Res ; 21(6): 1340-7, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25609068

RESUMO

PURPOSE: Estrogen receptor (ER) targeting is key in management of receptor-positive breast cancer. Currently, there are no methods to optimize anti-ER therapy dosing. This study assesses the use of 16α-(18)F-fluoroestradiol ((18)F-FES) PET for fulvestrant dose optimization in a preclinical ER(+) breast cancer model. EXPERIMENTAL DESIGN: In vitro, (18)F-FES retention was compared with ERα protein expression (ELISA) and ESR1 mRNA transcription (qPCR) in MCF7 cells (ER(+)) after treatment with different fulvestrant doses. MCF7 xenografts were grown in ovariectomized nude mice and assigned to vehicle, low- (0.05 mg), medium- (0.5 mg), or high-dose (5 mg) fulvestrant treatment groups (5-7 per group). Two and 3 days after fulvestrant treatment, PET/CT was performed using (18)F-FES and (18)F-FDG, respectively. ER expression was assessed by immunohistochemistry, ELISA, and qPCR on xenografts. Tumor proliferation was assessed using Ki67 immunohistochemistry. RESULTS: In vitro, we observed a parallel graded reduction in (18)F-FES uptake and ER expression with increased fulvestrant doses, despite enhancement of ER mRNA transcription. In xenografts, ER expression significantly decreased with increased fulvestrant dose, despite similar mRNA expression and Ki67 staining among the treatment groups. We observed a significant dose-dependent reduction of (18)F-FES PET mean standardized uptake value (SUV(mean)) with fulvestrant treatment but no significant difference among the treatment groups in (18)F-FDG PET SUV(mean). CONCLUSIONS: We demonstrated that (18)F-FES uptake mirrors the dose-dependent changes in functional ER expression with fulvestrant resulting in ER degradation and/or blockade; these precede changes in tumor metabolism and proliferation. Quantitative (18)F-FES PET may be useful for tracking early efficacy of ER blockade/degradation and guiding ER-targeted therapy dosing in patients with breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Estradiol/análogos & derivados , Estradiol/metabolismo , Antagonistas do Receptor de Estrogênio/farmacologia , Receptores de Estrogênio/metabolismo , Animais , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Estradiol/farmacologia , Feminino , Fulvestranto , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Appl Radiat Isot ; 80: 99-102, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23860127

RESUMO

OBJECTIVES: Often peptides used in synthesis of radiopharmaceutical PET tracers are lipophilic and adhere to the walls of container closure systems (CCS) such that costly peptide and product are not fully recoverable after synthesis occurs. This investigation compares a standard United States Pharmacopeia (USP) Type I borosilicate glass CCS to a cyclic polyolefin copolymer Crystal Zenith(®) (CZ) CCS, for (68)Ga-chloride and (68)Ga-DOTATOC ([(68)Ga] Ga-DOTA-D-Phe1-Tyr3-octreotide) retention in the reaction vial after labeling. METHODS: (68)Gallium labeling of DOTATOC was conducted by adding (68)Ga-chloride, 2M HEPES (4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid) or 0.75 M sodium acetate, and 1-30 µg of DOTATOC into the CZ or glass CCS. The reaction mixture was heated for 15 min and cooled to room temperature. The crude reaction mixture was then withdrawn via syringe, for final processing. The CCS was then assayed using a dose calibrator to determine the amount of retained (68)Ga-DOTATOC. Statistical significance was assessed using an unpaired Student's t-test. RESULTS: In all experiments (n=72) with various amounts of peptide and different buffering systems, the CZ CCS retained less activity than the glass CCS. Using 2 M HEPES and 15 µg or 30 µg of DOTATOC, the CZ CCS retained approximately 10% less of the labeled DOTATOC compared to the glass CCS (p<0.05). Utilizing either a sodium acetate or a HEPES buffering system with 15 µg or 30 µg of DOTATOC, the CZ CCS retained approximately 2.5% less of the total reaction activity compared to the glass CCS (p<0.05). Product yield was equivalent in glass and CZ CCS under the same reaction conditions. Both the CZ and glass vials showed no retention of (68)Ga-chloride. CONCLUSION: For applications involving the labeling of peptides such as (68)Ga-DOTATOC, the CZ CCS compared to the glass CCS, results in an improved recovery of product.


Assuntos
Compostos de Boro/química , Radioisótopos de Gálio/química , Vidro , Peptídeos/isolamento & purificação , Silicatos/química , Peptídeos/química
4.
Appl Radiat Isot ; 70(10): 2313-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22871433

RESUMO

We report an automated synthesis of [(18)F]-FMISO utilizing a prototype microfluidic radiochemistry module. The instrument allows for production of the tracer with 58%±2% (11 runs) decay corrected yield. Total time of production, including synthesis and purification averages 60 min. Use of the microfluidic platform results in a specific activity of 138.6 GBq/µ mol, which is higher than previously reported for conventional reactors.


Assuntos
Radioisótopos de Flúor/química , Microfluídica , Misonidazol/análogos & derivados , Oxigênio/química , Misonidazol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...