Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 23(20): e202200410, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36040754

RESUMO

Trypanosoma brucei is the causal infectious agent of African trypanosomiasis in humans and Nagana in livestock. Both diseases are currently treated with a small number of chemotherapeutics, which are hampered by a variety of limitations reaching from efficacy and toxicity complications to drug-resistance problems. Here, we explore the forward design of a new class of synthetic trypanocides based on nanostructured, core-shell DNA-lipid particles. In aqueous solution, the particles self-assemble into micelle-type structures consisting of a solvent-exposed, hydrophilic DNA shell and a hydrophobic lipid core. DNA-lipid nanoparticles have membrane-adhesive qualities and can permeabilize lipid membranes. We report the synthesis of DNA-cholesterol nanoparticles, which specifically subvert the membrane integrity of the T. brucei lysosome, killing the parasite with nanomolar potencies. Furthermore, we provide an example of the programmability of the nanoparticles. By functionalizing the DNA shell with a spliced leader (SL)-RNA-specific DNAzyme, we target a second trypanosome-specific pathway (dual-target approach). The DNAzyme provides a backup to counteract the recovery of compromised parasites, which reduces the risk of developing drug resistance.


Assuntos
DNA Catalítico , Nanopartículas , Tripanossomicidas , Trypanosoma brucei brucei , Humanos , Colesterol/metabolismo , DNA/metabolismo , DNA Catalítico/metabolismo , Lipídeos , Micelas , RNA Líder para Processamento/metabolismo , Solventes/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia
2.
Nucleic Acids Res ; 50(10): 5818-5833, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580050

RESUMO

The assembly of high molecular mass ribonucleoprotein complexes typically relies on the binary interaction of defined RNA sequences or precisely folded RNA motifs with dedicated RNA-binding domains on the protein side. Here we describe a new molecular recognition principle of RNA molecules by a high molecular mass protein complex. By chemically probing the solvent accessibility of mitochondrial pre-mRNAs when bound to the Trypanosoma brucei editosome, we identified multiple similar but non-identical RNA motifs as editosome contact sites. However, by treating the different motifs as mathematical graph objects we demonstrate that they fit a consensus 2D-graph consisting of 4 vertices (V) and 3 edges (E) with a Laplacian eigenvalue of 0.5477 (λ2). We establish that synthetic 4V(3E)-RNAs are sufficient to compete for the editosomal pre-mRNA binding site and that they inhibit RNA editing in vitro. Furthermore, we demonstrate that only two topological indices are necessary to predict the binding of any RNA motif to the editosome with a high level of confidence. Our analysis corroborates that the editosome has adapted to the structural multiplicity of the mitochondrial mRNA folding space by recognizing a fuzzy continuum of RNA folds that fit a consensus graph descriptor.


Assuntos
Edição de RNA , Trypanosoma/genética , Proteínas de Protozoários/metabolismo , RNA/genética , RNA/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo
3.
Bio Protoc ; 11(5): e3935, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33796609

RESUMO

Gene expression within the mitochondria of African trypanosomes and other protozoan organisms relies on a nucleotide-specific RNA-editing reaction. In the process exclusively uridine (U)-nucleotides are site-specifically inserted into and deleted from sequence-deficient primary transcripts to convert them into translatable mRNAs. The reaction is catalyzed by a 0.8 MDa multiprotein complex termed the editosome. Here we describe an improved in vitro test to quantitatively explore the catalytic activity of the editosome. The assay uses synthetic, fluorophore-derivatized oligoribonucleotides as editing substrates, which enable the automated electrophoretic separation of the reaction products by capillary electrophoresis (CE) coupled to laser-induced fluorescence (LIF) detection systems. The assay is robust, it requires only nanogram amounts of materials and by using multicapillary CE/LIF-instruments it can be executed in a highly parallel layout. Further improvements include the usage of phosphorothioate-modified and thus RNase-resistant substrate RNAs as well as multiplex-type fluorophore labeling strategies to monitor the U-insertion and U-deletion reaction simultaneously. The assay is useful for investigating the mechanism and enzymology of the editosome. However, it can also be executed in high-throughput to screen for RNA editing-specific inhibitors. Graphic abstract: Characteristics of the fluorescence-based in vitro U-insertion/U-deletion RNA-editing (FIDE) assay.

4.
Nucleic Acids Res ; 48(17): e99, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32756897

RESUMO

Mitochondrial gene expression in African trypanosomes and other trypanosomatid pathogens requires a U-nucleotide specific insertion/deletion-type RNA-editing reaction. The process is catalyzed by a macromolecular protein complex known as the editosome. Editosomes are restricted to the trypanosomatid clade and since editing is essential for the parasites, the protein complex represents a near perfect target for drug intervention strategies. Here, we report the development of an improved in vitro assay to monitor editosome function. The test system utilizes fluorophore-labeled substrate RNAs to analyze the processing reaction by automated, high-throughput capillary electrophoresis (CE) in combination with a laser-induced fluorescence (LIF) readout. We optimized the assay for high-throughput screening (HTS)-experiments and devised a multiplex fluorophore-labeling regime to scrutinize the U-insertion/U-deletion reaction simultaneously. The assay is robust, it requires only nanogram amounts of materials and it meets all performance criteria for HTS-methods. As such the test system should be helpful in the search for trypanosome-specific pharmaceuticals.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Edição de RNA , Trypanosoma brucei brucei/genética , Fluoresceína/química , Corantes Fluorescentes/química , Genoma Mitocondrial , Reação em Cadeia da Polimerase Multiplex/métodos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Uridina Trifosfato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...