Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1334861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362041

RESUMO

Introduction: Astrocytic GLT-1 glutamate transporters ensure the fidelity of glutamic neurotransmission by spatially and temporally limiting glutamate signals. The ability to limit neuronal hyperactivity relies on the localization and diffusion of GLT-1 on the astrocytic surface, however, little is known about the underlying mechanisms. We show that two isoforms of GLT-1, GLT-1a and GLT-1b, form nanoclusters on the surface of transfected astrocytes and HEK-293 cells. Methods: We used both fixed and live cell super-resolution imaging of fluorescent protein and epitope tagged proteins in co-cultures of rat astrocytes and neurons. Immunofluorescence techniques were also used. GLT1 diffusion was assessed via single particle tracking and fluorescence recovery after photobleach (FRAP). Results: We found GLT-1a, but not GLT-1b, nanoclusters concentrated adjacent to actin filaments which was maintained after addition of glutamate. GLT-1a nanocluster concentration near actin filaments was prevented by expression of a cytosolic GLT-1a C-terminus, suggesting the C-terminus is involved in the localization adjacent to cortical actin. Using super-resolution imaging, we show that astrocytic GLT-1a and actin co-localize in net-like structures around neuronal Kv2.1 clusters at points of neuron/astrocyte contact. Conclusion: Overall, these data describe a novel relationship between GLT-1a and cortical actin filaments, which localizes GLT-1a near neuronal structures responsive to ischemic insult.

2.
J Cell Sci ; 134(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34137443

RESUMO

The Kv2 channels encode delayed rectifier currents that regulate membrane potential in many tissues. They also have a non-conducting function to form stable junctions between the endoplasmic reticulum and plasma membranes, creating membrane contact sites that mediate functions distinct from membrane excitability. Therefore, proteins that interact with Kv2.1 and Kv2.2 channels can alter conducting and/or non-conducting channel properties. One member of the AMIGO family of proteins is an auxiliary ß-subunit for Kv2 channels and modulates Kv2.1 electrical activity. However, the AMIGO family has two additional members of ∼50% similarity that have not yet been characterized as Kv2 ß-subunits. In this work, we show that the surface trafficking and localization of all three AMIGOs are controlled by their assembly with both Kv2 channels. Additionally, assembly of each AMIGO with either Kv2.1 or Kv2.2 hyperpolarizes the channel activation midpoint by -10 mV. However, only AMIGO2 significantly slows inactivation and deactivation, leading to a prolonged open state of Kv2 channels. The co-regulatory effects of Kv2s and AMIGOs likely fine-tune both the electrical and non-electrical properties of the cells in which they are expressed.


Assuntos
Neurônios , Canais de Potássio Shab , Moléculas de Adesão Celular , Células HEK293 , Hipocampo/metabolismo , Humanos , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Canais de Potássio Shab/genética , Canais de Potássio Shab/metabolismo
3.
Channels (Austin) ; 13(1): 88-101, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30712450

RESUMO

The potassium channels Kv2.1 and Kv2.2 are widely expressed throughout the mammalian brain. Kv2.1 provides the majority of delayed rectifying current in rat hippocampus while both channels are differentially expressed in cortex. Particularly unusual is their neuronal surface localization pattern: while half the channel population is freely-diffusive on the plasma membrane as expected from the generalized Singer & Nicolson fluid mosaic model, the other half localizes into micron-sized clusters on the soma, dendrites, and axon initial segment. These clusters contain hundreds of channels, which for Kv2.1, are largely non-conducting. Competing theories of the mechanism underlying Kv2.1 clustering have included static tethering to being corralled by an actin fence. Now, recent work has demonstrated channel clustering is due to formation of endoplasmic reticulum/plasma membrane (ER/PM) junctions through interaction with ER-resident VAMP-associated proteins (VAPs). Interaction between surface Kv2 channels and ER VAPs groups channels together in clusters. ER/PM junctions play important roles in inter-organelle communication: they regulate ion flux, are involved in lipid transfer, and are sites of endo- and exocytosis. Kv2-induced ER/PM junctions are regulated through phosphorylation of the channel C-terminus which in turn regulates VAP binding, providing a rapid means to create or dismantle these microdomains. In addition, insults such as hypoxia or ischemia disrupt this interaction resulting in ER/PM junction disassembly. Kv2 channels are the only known plasma membrane protein to form regulated, injury sensitive junctions in this manner. Furthermore, it is likely that concentrated VAPs at these microdomains sequester additional interactors whose functions are not yet fully understood.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Canais de Potássio Shab/metabolismo , Animais , Humanos
4.
Proc Natl Acad Sci U S A ; 115(31): E7331-E7340, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29941597

RESUMO

Kv2.1 exhibits two distinct forms of localization patterns on the neuronal plasma membrane: One population is freely diffusive and regulates electrical activity via voltage-dependent K+ conductance while a second one localizes to micrometer-sized clusters that contain densely packed, but nonconducting, channels. We have previously established that these clusters represent endoplasmic reticulum/plasma membrane (ER/PM) junctions that function as membrane trafficking hubs and that Kv2.1 plays a structural role in forming these membrane contact sites in both primary neuronal cultures and transfected HEK cells. Clustering and the formation of ER/PM contacts are regulated by phosphorylation within the channel C terminus, offering cells fast, dynamic control over the physical relationship between the cortical ER and PM. The present study addresses the mechanisms by which Kv2.1 and the related Kv2.2 channel interact with the ER membrane. Using proximity-based biotinylation techniques in transfected HEK cells we identified ER VAMP-associated proteins (VAPs) as potential Kv2.1 interactors. Confirmation that Kv2.1 and -2.2 bind VAPA and VAPB employed colocalization/redistribution, siRNA knockdown, and Förster resonance energy transfer (FRET)-based assays. CD4 chimeras containing sequence from the Kv2.1 C terminus were used to identify a noncanonical VAP-binding motif. VAPs were first identified as proteins required for neurotransmitter release in Aplysia and are now known to be abundant scaffolding proteins involved in membrane contact site formation throughout the ER. The VAP interactome includes AKAPs, kinases, membrane trafficking machinery, and proteins regulating nonvesicular lipid transport from the ER to the PM. Therefore, the Kv2-induced VAP concentration at ER/PM contact sites is predicted to have wide-ranging effects on neuronal cell biology.


Assuntos
Membrana Celular/química , Retículo Endoplasmático/química , Canais de Potássio Shab/química , Proteínas de Transporte Vesicular/química , Animais , Biotinilação , Células HEK293 , Hipocampo/metabolismo , Humanos , Transporte Proteico , Ratos , Canais de Potássio Shab/fisiologia , Proteínas de Transporte Vesicular/metabolismo
5.
PLoS One ; 12(12): e0188830, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29244806

RESUMO

The non-pathogenic parvovirus, adeno-associated virus (AAV), is an efficient vector for transgene expression in vivo and shows promise for treatment of brain disorders in clinical trials. Currently, there are more than 100 AAV serotypes identified that differ in the binding capacity of capsid proteins to specific cell surface receptors that can transduce different cell types and brain regions in the CNS. In the current study, multiple AAV serotypes expressing a GFP reporter (AAV1, AAV2/1, AAVDJ, AAV8, AAVDJ8, AAV9, AAVDJ9) were screened for their infectivity in both primary murine astrocyte and neuronal cell cultures. AAV2/1, AAVDJ8 and AAV9 were selected for further investigation of their tropism throughout different brain regions and cell types. Each AAV was administered to P0-neonatal mice via intracerebroventricular injections (ICV). Brains were then systematically analyzed for GFP expression at 3 or 6 weeks post-infection in various regions, including the olfactory bulb, striatum, cortex, hippocampus, substantia nigra (SN) and cerebellum. Cell counting data revealed that AAV2/1 infections were more prevalent in the cortical layers but penetrated to the midbrain less than AAVDJ8 and AAV9. Additionally, there were differences in the persistence of viral transgene expression amongst the three serotypes examined in vivo at 3 and 6 weeks post-infection. Because AAV-mediated transgene expression is of interest in neurodegenerative diseases such as Parkinson's Disease, we examined the SN with microscopy techniques, such as CLARITY tissue transmutation, to identify AAV serotypes that resulted in optimal transgene expression in either astrocytes or dopaminergic neurons. AAVDJ8 displayed more tropism in astrocytes compared to AAV9 in the SN region. We conclude that ICV injection results in lasting expression of virally encoded transgene when using AAV vectors and that specific AAV serotypes are required to selectively deliver transgenes of interest to different brain regions in both astrocytes and neurons.


Assuntos
Astrócitos/metabolismo , Dependovirus/genética , Terapia Genética/métodos , Neurônios/metabolismo , Substância Negra/metabolismo , Transgenes , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Cerebelo/citologia , Cerebelo/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Dependovirus/classificação , Dependovirus/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Injeções Intraventriculares , Camundongos , Neurônios/citologia , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Imagem Óptica , Especificidade de Órgãos , Cultura Primária de Células , Sorogrupo , Substância Negra/citologia , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...