Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Front Chem ; 11: 1282450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025078

RESUMO

The development of disease screening methods using biomedical detection dogs relies on the collection and analysis of body odors, particularly volatile organic compounds (VOCs) present in body fluids. To capture and analyze odors produced by the human body, numerous protocols and materials are used in forensics or medical studies. This paper provides an overview of sampling devices used to collect VOCs from sweat and exhaled air, for medical diagnostic purposes using canine olfaction and/or Gas Chromatography-Mass spectrometry (GC-MS). Canine olfaction and GC-MS are regarded as complementary tools, holding immense promise for detecting cancers and infectious diseases. However, existing literature lacks guidelines for selecting materials suitable for both canine olfaction and GC-MS. Hence, this review aims to address this gap and pave the way for efficient body odor sampling materials. The first section of the paper describes the materials utilized in training sniffing dogs, while the second section delves into the details of sampling devices and extraction techniques employed for exhaled air and sweat analysis using GC-MS. Finally, the paper proposes the development of an ideal sampling device tailored for detection purposes in the field of odorology. By bridging the knowledge gap, this study seeks to advance disease detection methodologies, harnessing the unique abilities of both dogs and GC-MS analysis in biomedical research.

2.
Cancers (Basel) ; 15(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37296901

RESUMO

Breast cancer (BC) remains one of the most commonly diagnosed malignancies in women. There is increasing interest in the development of non-invasive screening methods. Volatile organic compounds (VOCs) emitted through the metabolism of cancer cells are possible novel cancer biomarkers. This study aims to identify the existence of BC-specific VOCs in the sweat of BC patients. Sweat samples from the breast and hand area were collected from 21 BC participants before and after breast tumor ablation. Thermal desorption coupled with two-dimensional gas chromatography and mass spectrometry was used to analyze VOCs. A total of 761 volatiles from a homemade human odor library were screened on each chromatogram. From those 761 VOCs, a minimum of 77 VOCs were detected within the BC samples. Principal component analysis showed that VOCs differ between the pre- and post-surgery status of the BC patients. The Tree-based Pipeline Optimization Tool identified logistic regression as the best-performing machine learning model. Logistic regression modeling identified VOCs that distinguish the pre-and post-surgery state in BC patients on both the breast and hand area with sensitivities close to 1. Further, Shapley additive explanations and the probe variable method identified the most important and pertinent VOCs distinguishing pre- and post-operative status which are mostly of distinct origin for the hand and breast region. Results suggest the possibility to identify endogenous metabolites linked to BC, hence proposing this innovative pipeline as a stepstone to discovering potential BC biomarkers. Large-scale studies in a multi-centered VOC analysis setting must be carried out to validate obtained findings.

3.
Toxics ; 11(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112558

RESUMO

Prenatal exposure to a mixture (MIX N) of eight endocrine-disrupting chemicals has been associated with language delay in children in a Swedish pregnancy cohort. A novel approach was proposed linking this epidemiological association with experimental evidence, where the effect of MIX N on thyroid hormone signaling was assessed using the Xenopus eleuthero-embryonic thyroid assay (XETA OECD TG248). From this experimental data, a point of departure (PoD) was derived based on OECD guidance. Our aim in the current study was to use updated toxicokinetic models to compare exposures of women of reproductive age in the US population to MIX N using a Similar Mixture Approach (SMACH). Based on our findings, 66% of women of reproductive age in the US (roughly 38 million women) had exposures sufficiently similar to MIX N. For this subset, a Similar Mixture Risk Index (SMRIHI) was calculated comparing their exposures to the PoD. Women with SMRIHI > 1 represent 1.1 million women of reproductive age. Older women, Mexican American and other/multi race women were less likely to have high SMRIHI values compared to Non-Hispanic White women. These findings indicate that a reference mixture of chemicals identified in a Swedish cohort-and tested in an experimental model for establishment of (PoDs)-is also of health relevance in a US population.

4.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768911

RESUMO

Thyroid hormones (TH) are essential for normal brain development, influencing neural cell differentiation, migration, and synaptogenesis. Multiple endocrine-disrupting chemicals (EDCs) are found in the environment, raising concern for their potential effects on TH signaling and the consequences on neurodevelopment and behavior. While most research on EDCs investigates the effects of individual chemicals, human health may be adversely affected by a mixture of chemicals. The potential consequences of EDC exposure on human health are far-reaching and include problems with immune function, reproductive health, and neurological development. We hypothesized that embryonic exposure to a mixture of chemicals (containing phenols, phthalates, pesticides, heavy metals, and perfluorinated, polychlorinated, and polybrominated compounds) identified as commonly found in the human amniotic fluid could lead to altered brain development. We assessed its effect on TH signaling and neurodevelopment in an amphibian model (Xenopus laevis) highly sensitive to thyroid disruption. Fertilized eggs were exposed for eight days to either TH (thyroxine, T4 10 nM) or the amniotic mixture (at the actual concentration) until reaching stage NF47, where we analyzed gene expression in the brains of exposed tadpoles using both RT-qPCR and RNA sequencing. The results indicate that whilst some overlap on TH-dependent genes exists, T4 and the mixture have different gene signatures. Immunohistochemistry showed increased proliferation in the brains of T4-treated animals, whereas no difference was observed for the amniotic mixture. Further, we demonstrated diminished tadpoles' motility in response to T4 and mixture exposure. As the individual chemicals composing the mixture are considered safe, these results highlight the importance of examining the effects of mixtures to improve risk assessment.


Assuntos
Líquido Amniótico , Disruptores Endócrinos , Humanos , Animais , Xenopus laevis/metabolismo , Líquido Amniótico/metabolismo , Hormônios Tireóideos/metabolismo , Encéfalo/metabolismo , Disruptores Endócrinos/farmacologia , Expressão Gênica , Larva/metabolismo
5.
Neuroendocrinology ; 113(12): 1298-1311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35753306

RESUMO

INTRODUCTION: The extensive use of the insecticide chlorpyrifos (CPF) throughout the world has brought increased scrutiny on its environmental and health impact. CPF is a cholinergic neurotoxicant; however, exposure to low noncholinergic doses is associated with numerous neurodevelopmental effects in animal models. In this study, we aimed to assess CPF for its potential to disrupt thyroid hormone signalling and investigate the short- and long-term effects on neurodevelopment by using Xenopus laevis. METHODS: The thyroid hormone (TH) disrupting potential of CPF was assessed using TH-sensitive transgenic Tg(thibz:eGFP) tadpoles. The consequences of early embryonic exposure were examined by exposing fertilized eggs for 72 h to environmentally relevant CPF concentrations (10-10 M and 10-8 M). Three endpoints were evaluated: (1) gene expression in whole embryonic brains immediately after exposure, (2) mobility and brain morphology 1 week after exposure, and (3) brain morphology and axon diameters at the end of metamorphosis (2 months after the exposure). RESULTS: CPF disrupted TH signalling in Tg(thibz:eGFP) tadpoles. The expression of genes klf9, cntn4, oatp1c1, and tubb2b was downregulated in response to CPF. Tadpoles exposed to CPF exhibited increased mobility and altered brain morphology compared to control tadpoles. Early embryonic exposure of CPF affected myelinated axon diameter, with exposed animals exhibiting shifted frequency distributions of myelinated axons diameters towards smaller diameters in the hindbrain of froglets. DISCUSSION/CONCLUSION: This study provides more evidence of the endocrine and neurodevelopment disrupting activity of CPF. Further experimental and epidemiological studies are warranted to determine the long-term consequences of early CPF exposure on brain development.


Assuntos
Clorpirifos , Animais , Xenopus laevis/metabolismo , Clorpirifos/toxicidade , Clorpirifos/metabolismo , Hormônios Tireóideos , Metamorfose Biológica/fisiologia , Encéfalo/metabolismo
6.
Integr Cancer Ther ; 21: 15347354221140516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36541180

RESUMO

BACKGROUND: Remote medical scent detection of cancer and infectious diseases with dogs and rats has been an increasing field of research these last 20 years. If validated, the possibility of implementing such a technique in the clinic raises many hopes. This systematic review was performed to determine the evidence and performance of such methods and assess their potential relevance in the clinic. METHODS: Pubmed and Web of Science databases were independently searched based on PRISMA standards between 01/01/2000 and 01/05/2021. We included studies aiming at detecting cancers and infectious diseases affecting humans with dogs or rats. We excluded studies using other animals, studies aiming to detect agricultural diseases, diseases affecting animals, and others such as diabetes and neurodegenerative diseases. Only original articles were included. Data about patients' selection, samples, animal characteristics, animal training, testing configurations, and performances were recorded. RESULTS: A total of 62 studies were included. Sensitivity and specificity varied a lot among studies: While some publications report low sensitivities of 0.17 and specificities around 0.29, others achieve rates of 1 sensitivity and specificity. Only 6 studies were evaluated in a double-blind screening-like situation. In general, the risk of performance bias was high in most evaluated studies, and the quality of the evidence found was low. CONCLUSIONS: Medical detection using animals' sense of smell lacks evidence and performances so far to be applied in the clinic. What odors the animals detect is not well understood. Further research should be conducted, focusing on patient selection, samples (choice of materials, standardization), and testing conditions. Interpolations of such results to free running detection (direct contact with humans) should be taken with extreme caution. Considering this synthesis, we discuss the challenges and highlight the excellent odor detection threshold exhibited by animals which represents a potential opportunity to develop an accessible and non-invasive method for disease detection.


Assuntos
Doenças Transmissíveis , Neoplasias , Humanos , Cães , Animais , Ratos , Odorantes , Neoplasias/diagnóstico , Olfato , Doenças Transmissíveis/diagnóstico , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Biomark Insights ; 17: 11772719221100709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645556

RESUMO

Introduction: An early diagnosis is crucial in reducing mortality among people who have breast cancer (BC). There is a shortfall of characteristic early clinical symptoms in BC patients, highlighting the importance of investigating new methods for its early detection. A promising novel approach is the analysis of volatile organic compounds (VOCs) produced and emitted through the metabolism of cancer cells. Methods: The purpose of this systematic review is to outline the published research regarding BC-associated VOCs. For this, headspace analysis of VOCs was explored in patient-derived body fluids, animal model-derived fluids, and BC cell lines to identify BC-specific VOCs. A systematic search in PubMed and Web of Science databases was conducted according to the PRISMA guidelines. Results: Thirty-two studies met the criteria for inclusion in this review. Results highlight that VOC analysis can be promising as a potential novel screening tool. However, results of in vivo, in vitro and case-control studies have delivered inconsistent results leading to a lack of inter-matrix consensus between different VOC sampling methods. Discussion: Discrepant VOC results among BC studies have been obtained, highly due to methodological discrepancies. Therefore, methodological issues leading to disparities have been reviewed and recommendations have been made on the standardisation of VOC collection and analysis methods for BC screening, thereby improving future VOC clinical validation studies.

8.
Science ; 375(6582): eabe8244, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175820

RESUMO

Convergent evidence associates exposure to endocrine disrupting chemicals (EDCs) with major human diseases, even at regulation-compliant concentrations. This might be because humans are exposed to EDC mixtures, whereas chemical regulation is based on a risk assessment of individual compounds. Here, we developed a mixture-centered risk assessment strategy that integrates epidemiological and experimental evidence. We identified that exposure to an EDC mixture in early pregnancy is associated with language delay in offspring. At human-relevant concentrations, this mixture disrupted hormone-regulated and disease-relevant regulatory networks in human brain organoids and in the model organisms Xenopus leavis and Danio rerio, as well as behavioral responses. Reinterrogating epidemiological data, we found that up to 54% of the children had prenatal exposures above experimentally derived levels of concern, reaching, for the upper decile compared with the lowest decile of exposure, a 3.3 times higher risk of language delay.


Assuntos
Disruptores Endócrinos/toxicidade , Transtornos do Desenvolvimento da Linguagem/epidemiologia , Transtornos do Neurodesenvolvimento/epidemiologia , Efeitos Tardios da Exposição Pré-Natal , Transcriptoma/efeitos dos fármacos , Animais , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Pré-Escolar , Estrogênios/metabolismo , Feminino , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Locomoção/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Transtornos do Neurodesenvolvimento/genética , Organoides , Fenóis/análise , Fenóis/toxicidade , Ácidos Ftálicos/análise , Ácidos Ftálicos/toxicidade , Gravidez , Medição de Risco , Hormônios Tireóideos/metabolismo , Xenopus laevis , Peixe-Zebra
10.
Open Biol ; 11(8): 210065, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34375549

RESUMO

Urp1 and Urp2 are two neuropeptides of the urotensin II family identified in teleost fish and mainly expressed in cerebrospinal fluid (CSF)-contacting neurons. It has been recently proposed that Urp1 and Urp2 are required for correct axis formation and maintenance. Their action is thought to be mediated by the receptor Uts2r3, which is specifically expressed in dorsal somites. In support of this view, it has been demonstrated that the loss of uts2r3 results in severe scoliosis in adult zebrafish. In the present study, we report for the first time the occurrence of urp2, but not of urp1, in two tetrapod species of the Xenopus genus. In X. laevis, we show that urp2 mRNA-containing cells are CSF-contacting neurons. Furthermore, we identified utr4, the X. laevis counterparts of zebrafish uts2r3, and we demonstrate that, as in zebrafish, it is expressed in the dorsal somatic musculature. Finally, we reveal that, in X. laevis, the disruption of utr4 results in an abnormal curvature of the antero-posterior axis of the tadpoles. Taken together, our results suggest that the role of the Utr4 signalling pathway in the control of body straightness is an ancestral feature of bony vertebrates and not just a peculiarity of ray-finned fishes.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Receptores Acoplados a Proteínas G/metabolismo , Somatotipos , Urotensinas/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Receptores Acoplados a Proteínas G/genética , Homologia de Sequência , Proteínas de Xenopus/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA