Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 35(20): 8664-8674, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901145

RESUMO

High-entropy materials (HEMs) represent a new class of solid solutions containing at least five different elements. Their compositional diversity makes them promising as platforms for the development of functional materials. We synthesized new HEMs in a mullite-type structure and present five compounds, i.e., Bi2(Al0.25Ga0.25Fe0.25Mn0.25)4O9 and A2Mn4O10 with variations of A = Nd, Sm, Y, Er, Eu, Ce, and Bi, demonstrating the vast accessible composition space. By combining scattering, microscopy, and spectroscopy techniques, we show that our materials are mixed solid solutions. Remarkably, when following their crystallization in situ using X-ray diffraction and X-ray absorption spectroscopy, we find that the HEMs form through a metastable amorphous phase without the formation of any crystalline intermediates. We expect that our synthesis is excellently suited to synthesizing diverse HEMs and therefore will have a significant impact on their future exploration.

2.
Inorg Chem ; 62(37): 14949-14958, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37658472

RESUMO

Understanding material nucleation processes is crucial for the development of synthesis pathways for tailormade materials. However, we currently have little knowledge of the influence of the precursor solution structure on the formation pathway of materials. We here use in situ total scattering to show how the precursor solution structure influences which crystal structure is formed during the hydrothermal synthesis of tungsten oxides. We investigate the synthesis of tungsten oxide from the two polyoxometalate salts, ammonium metatungstate, and ammonium paratungstate. In both cases, a hexagonal ammonium tungsten bronze (NH4)0.25WO3 is formed as the final product. If the precursor solution contains metatungstate clusters, this phase forms directly in the hydrothermal synthesis. However, if the paratungstate B cluster is present at the time of crystallization, a metastable intermediate phase in the form of a pyrochlore-type tungsten oxide, WO3·0.5H2O, initially forms. The pyrochlore structure then undergoes a phase transformation into the tungsten bronze phase. Our studies thus experimentally show that the precursor cluster structure present at the moment of crystallization directly influences the formed crystalline phase and suggests that the precursor structure just prior to crystallization can be used as a tool for targeting specific crystalline phases of interest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...