Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 127(46): 22808-22816, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38037636

RESUMO

The heat capacities of CsPbI3, Cs4PbI6, and Cs3Bi2I9 were studied using low-temperature thermal relaxation calorimetry in the temperature range of 1.9-300 K. The three compounds are insulators, with no electronic contribution to the heat capacity. None of them show detectable anomalies in the studied temperature window. Thermodynamic properties at standard conditions are derived. Previously reported results on Cs3Bi2I9 are not fully consistent with the present findings. Moreover, the magnetic susceptibilities of the three title compounds were measured.

2.
Phys Chem Chem Phys ; 25(40): 27694-27717, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812236

RESUMO

Ferritin, the major iron storage protein in organisms, stores iron in the form of iron oxyhydroxide most likely involving phosphorous as a constituent, the mineral form of which is not well understood. Therefore, the question of how the ca. 2000 iron atoms in the ferritin core are magnetically coupled is still largely open. The ferritin core, with a diameter of 5-8 nm, is encapsulated in a protein shell that also catalyzes the uptake of iron and protects the core from outside interactions. Neurodegenerative disease is associated with iron imbalance, generating specific interest in the magnetic properties of ferritin. Here we present 9 GHz continuous wave EPR and a comprehensive set of magnetometry techniques including isothermal remanent magnetization (IRM) and AC susceptibility to elucidate the magnetic properties of the core of human liver ferritin. For the analysis of the magnetometry data, a new microscopic model of the ferritin-core spin structure is derived, showing that magnetic moment is generated by surface-spin canting, rather than defects. The analysis explicitly includes the distribution of magnetic parameters, such as the distribution of the magnetic moment. This microscopic model explains some of the inconsistencies resulting from previous analysis approaches. The main findings are a mean magnetic moment of 337µB with a standard deviation of 0.947µB. In contrast to previous reports, only a relatively small contribution of paramagnetic and ferrimagnetic phases is found, in the order of maximally 3%. For EPR, the over 30 mT wide signal of the ferritin core is analyzed using the model of the giant spin system [Fittipaldi et al., Phys. Chem. Chem. Phys., 2016, 18, 3591-3597]. Two components are needed minimally, and the broadening of these components suggests a broad distribution of the magnetic resonance parameters, the zero-field splitting, D, and the spin quantum number, S. We compare parameters from EPR and magnetometry and find that EPR is particularly sensitive to the surface spins of the core, revealing the potential to use EPR as a diagnostic for surface-spin disorder.


Assuntos
Ferritinas , Doenças Neurodegenerativas , Humanos , Ferritinas/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Ferro/química , Magnetometria , Fígado/metabolismo
3.
Sci Rep ; 10(1): 16440, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020534

RESUMO

Iron accumulation in the brain is a phenomenon common to many neurodegenerative diseases, perhaps most notably Alzheimer's disease (AD). We present here magnetic analyses of post-mortem brain tissue of patients who had severe Alzheimer's disease, and compare the results with those from healthy controls. Isothermal remanent magnetization experiments were performed to assess the extent to which different magnetic carriers are affected by AD pathology and formalin fixation. While Alzheimer's brain material did not show higher levels of magnetite/maghemite nanoparticles than corresponding controls, the ferrihydrite mineral, known to be found within the core of ferritin proteins and hemosiderin aggregates, almost doubled in concentration in patients with Alzheimer's pathology, strengthening the conclusions of our previous studies. As part of this study, we also investigated the effects of sample preparation, by performing experiments on frozen tissue as well as tissue which had been fixed in formalin for a period of 5 months. Our results showed that the two different preparations did not critically affect the concentration of magnetic carriers in brain tissue, as observable by SQUID magnetometry.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Formaldeído/metabolismo , Ferro/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Compostos Férricos/metabolismo , Ferritinas/metabolismo , Óxido Ferroso-Férrico/metabolismo , Hemossiderina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas/metabolismo
4.
Sci Adv ; 4(9): eaat7323, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30255145

RESUMO

The lack of inversion symmetry in the crystal lattice of magnetic materials gives rise to complex noncollinear spin orders through interactions of a relativistic nature, resulting in interesting physical phenomena, such as emergent electromagnetism. Studies of cubic chiral magnets revealed a universal magnetic phase diagram composed of helical spiral, conical spiral, and skyrmion crystal phases. We report a remarkable deviation from this universal behavior. By combining neutron diffraction with magnetization measurements, we observe a new multidomain state in Cu2OSeO3. Just below the upper critical field at which the conical spiral state disappears, the spiral wave vector rotates away from the magnetic field direction. This transition gives rise to large magnetic fluctuations. We clarify the physical origin of the new state and discuss its multiferroic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...