Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 6(6): e04210, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596523

RESUMO

Antioxidants are molecules that neutralize reactive oxygen species in the human body, reportedly reducing the risk of cancer and cardiovascular diseases. With multiple dietary products being advertised by their assumed high antioxidant concentration, the need for a proper way of analyzing antioxidant containing beverages becomes apparent. In this research, the antioxidant nature of teas, wines and (superfood) juices is investigated using staircase voltammetry (SV). A new parameter is proposed and evaluated to characterize the antioxidant nature, including its antioxidant capacity and activity: the Antioxidant Index (AI). AI showed green tea to have the best antioxidant nature of teas and red wine to be a better antioxidant than white wine. Superfoods did not show better antioxidant behavior than non-superfoods. AI proved to be a promising way of investigating the antioxidant nature of beverages.

2.
Mater Today Bio ; 4: 100025, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32159154

RESUMO

In bottom-up tissue engineering, small modular units of cells and biomaterials are assembled toward â€‹larger and more complex ones. In conjunction with a new implementation of this approach, a novel method to fabricate microscale objects from biopolymers by thermal imprinting on water-soluble sacrificial layers is presented. By this means, geometrically well-defined objects could be obtained without involving toxic agents in the form of photoinitiators. The micro-objects were used as cell-adhesive substrates and cell spacers in engineered tissues created by cell-guided assembly of the objects. Such constructs can be applied both for in vitro studies and clinical treatments. Clinically relevantly sized aggregates comprised of cells and micro-objects retained their viability up to 2 weeks of culture. The aggregation behavior of cells and objects showed to depend on the type and number of cells applied. To demonstrate the micro-objects' potential for engineering vascularized tissues, small aggregates of human bone marrow stromal cells (hMSCs) and micro-objects were coated with a layer of human umbilical vein endothelial cells (HUVECs) and fused into larger tissue constructs, resulting in HUVEC-rich regions at the aggregates' interfaces. This three-dimensional network-type spatial cellular organization could foster the establishment of (premature) vascular structures as a vital prerequisite of, for example, bottom-up-engineered bone-like tissue.

3.
J Tissue Eng Regen Med ; 10(8): 679-89, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-24668928

RESUMO

In regenerative medicine studies, cell seeding efficiency is not only optimized by changing the chemistry of the biomaterials used as cell culture substrates, but also by altering scaffold geometry, culture and seeding conditions. In this study, the importance of seeding parameters, such as initial cell number, seeding volume, seeding concentration and seeding condition is shown. Human mesenchymal stem cells (hMSCs) were seeded into cylindrically shaped 4 × 3 mm polymeric scaffolds, fabricated by fused deposition modelling. The initial cell number ranged from 5 × 10(4) to 8 × 10(5) cells, in volumes varying from 50 µl to 400 µl. To study the effect of seeding conditions, a dynamic system, by means of an agitation plate, was compared with static culture for both scaffolds placed in a well plate or in a confined agarose moulded well. Cell seeding efficiency decreased when seeded with high initial cell numbers, whereas 2 × 10(5) cells seemed to be an optimal initial cell number in the scaffolds used here. The influence of seeding volume was shown to be dependent on the initial cell number used. By optimizing seeding parameters for each specific culture system, a more efficient use of donor cells can be achieved. Copyright © 2013 John Wiley & Sons, Ltd.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Alicerces Teciduais/química , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Integr Biol (Camb) ; 7(12): 1574-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26566169

RESUMO

Many studies have shown the influence of soluble factors and material properties on the differentiation capacity of mesenchymal stromal cells (MSCs) cultured as monolayers. These types of two-dimensional (2D) studies can be used as simplified models to understand cell processes related to stem cell sensing and mechano-transduction in a three-dimensional (3D) context. For several other mechanisms such as cell-cell signaling, cell proliferation and cell morphology, it is well-known that cells behave differently on a planar surface compared to cells in 3D environments. In classical tissue engineering approaches, a combination of cells, 3D scaffolds and soluble factors are considered as the key ingredients for the generation of mechanically stable 3D tissue constructs. However, when MSCs are used for tissue engineering strategies, little is known about the maintenance of their differentiation potential in 3D scaffolds after the removal of differentiation soluble factors. In this study, the differentiation potential of human MSCs (hMSCs) into the chondrogenic and osteogenic lineages on two distinct 3D scaffolds, additive manufactured electrospun scaffolds, was assessed and compared to conventional 2D culture. Human MSCs cultured in the presence of soluble factors in 3D showed to differentiate to the same extent as hMSCs cultured as 2D monolayers or as scaffold-free pellets, indicating that the two scaffolds do not play a consistent role in the differentiation process. In the case of phenotypic changes, the achieved differentiated phenotype was not maintained after the removal of soluble factors, suggesting that the plasticity of hMSCs is retained in 3D cell culture systems. This finding can have implications for future tissue engineering approaches in which the validation of hMSC differentiation on 3D scaffolds will not be sufficient to ensure the maintenance of the functionality of the cells in the absence of appropriate differentiation signals.


Assuntos
Células-Tronco Mesenquimais/citologia , Fosfatase Alcalina/metabolismo , Técnicas de Cultura de Células , Desdiferenciação Celular , Diferenciação Celular , Condrogênese , Matriz Extracelular/metabolismo , Humanos , Mecanotransdução Celular , Células-Tronco Mesenquimais/fisiologia , Microscopia Eletrônica de Varredura , Osteogênese , Fenótipo , Polímeros/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...