Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nano Lett ; 21(19): 7989-7997, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34569799

RESUMO

Recent studies have demonstrated that amorphous materials, from granular packings to atomic glasses, share multiple striking similarities, including a universal onset strain level for yield. This is despite vast differences in length scales and in the constituent particles' interactions. However, the nature of localized particle rearrangements is not well understood, and how local interactions affect overall performance remains unknown. Here, we introduce a multiscale adhesive discrete element method to simulate recent novel experiments of disordered nanoparticle packings indented and imaged with single nanoparticle resolution. The simulations exhibit multiple behaviors matching the experiments. By directly monitoring spatial rearrangements and interparticle bonding/debonding under the packing's surface, we uncover the mechanisms of the yielding and hardening phenomena observed in experiments. Interparticle friction and adhesion synergistically toughen the packings and retard plastic deformation. Moreover, plasticity can result from bond switching without particle rearrangements. These results furnish insights for understanding yielding in amorphous materials generally.


Assuntos
Adesivos , Nanopartículas , Fricção
3.
Nano Lett ; 18(9): 5418-5425, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30103605

RESUMO

Nanoindentation experiments on disordered nanoparticle packings performed both in an atomic force microscope and in situ in a transmission electron microscope are used to investigate the mechanics of plastic deformation. Under an applied load, these highly porous films exhibit load drops, the magnitudes of which are consistent with an exponential population distribution. These load drops are attributed to local rearrangements of a small number of particles, which bear similarities to shear transformation zones and to the T1 process, both of which have been previously predicted for disordered packings. An increase in the relative humidity results in an increase in the number of observed load drops, indicating that the strength of the particle interactions has a significant effect on the modes of plastic deformation. These results suggest how disordered nanoparticle packings may be expected to behave in devices operating under varying environments.

4.
Nano Lett ; 16(4): 2455-62, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26977533

RESUMO

Atomic force microscopy-based nanoindentation is used to image and probe the local mechanical properties of thin disordered nanoparticle packings. The probed region is limited to the size of a few particles, and an individual particle can be loaded and displaced to a fraction of a single particle radius. The results demonstrate heterogeneous mechanical response that is location-dependent. The weak locations may be analogous to the "soft spots" previously predicted in glasses and other disordered packings.

6.
J Biomech ; 46(8): 1447-53, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23561703

RESUMO

A biphasic model for noncommunicating hydrocephalus in patient-specific geometry is proposed. The model can take into account the nonlinear behavior of brain tissue under large deformation, the nonlinear variation of hydraulic conductivity with deformation, and contact with a rigid, impermeable skull using a recently developed algorithm. The model was capable of achieving over a 700 percent ventricular enlargement, which is much greater than in previous studies, primarily due to the use of an anatomically realistic skull recreated from magnetic resonance imaging rather than an artificial skull created by offsetting the outer surface of the cerebrum. The choice of softening or stiffening behavior of brain tissue, both having been demonstrated in previous experimental studies, was found to have a significant effect on the volume and shape of the deformed ventricle, and the consideration of the variation of the hydraulic conductivity with deformation had a modest effect on the deformed ventricle. The model predicts that noncommunicating hydrocephalus occurs for ventricular fluid pressure on the order of 1300 Pa.


Assuntos
Encéfalo/patologia , Análise de Elementos Finitos , Hidrocefalia/patologia , Modelos Anatômicos , Idoso , Algoritmos , Fenômenos Biomecânicos , Encéfalo/fisiopatologia , Humanos , Hidrocefalia/fisiopatologia , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...