Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 102(5): 545-553, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34963687

RESUMO

Conventional histological stains, such as hematoxylin plus eosin (H&E), and immunohistochemistry (IHC) are mainstays of histology that provide complementary diagnostic information. H&E and IHC currently require separate slides, because the stains would otherwise obscure one another. This consumes small specimen, limiting the total amount of testing. Additionally, performing H&E and IHC on different slides does not permit comparison of staining at the single cell level, since the same cells are not present on each slide, and alignment of tissue features can be problematic due to changes in tissue landscape with sectioning. We have solved these problems by performing conventional staining and IHC on the same slide using invisible IHC chromogens, such that the chromogens are not visible when viewing the conventional stain and the conventional stain is excluded from images of the IHC. Covalently deposited chromogens provided a convenient route to invisible chromogen design and are stable to reagents used in conventional staining. A dual-camera brightfield microscope system was developed that permits simultaneous viewing of both visible conventional stains and invisible IHC chromogens. Simultaneous staining was demonstrated on several formalin-fixed paraffin-embedded tissue specimens using single and duplex IHC, with chromogens that absorb ultraviolet and near infrared light, followed by H&E staining. The concept was extended to other conventional stains, including mucicarmine special stain and Papanicoulou stain, and further extended to cytology specimens. In addition to interactive video review, images were recorded using multispectral imaging and image processing to provide flexible production of color composite images and enable quantitative analysis.


Assuntos
Corantes , Amarelo de Eosina-(YS) , Hematoxilina , Imuno-Histoquímica , Coloração e Rotulagem
2.
Lab Invest ; 100(8): 1124-1136, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32341516

RESUMO

Brightfield microscopy is the preferred method of pathologists for diagnosing solid tumors, utilizing common staining techniques such as hematoxylin and eosin staining and immunohistochemistry (IHC). However, as our understanding of the complex tumor microenvironment grows, there is increasing demand for multiplexed biomarker detection. Currently, multiplexed IHC assays are almost exclusively based on immunofluorescence because brightfield techniques are limited by the broad spectral absorption of chromogens and a reliance on conventional 3-channel color cameras. In this work, we overcome these limitations by combining new chromogens possessing narrow absorbance bands with matched illumination channels and monochrome imaging. Multiplex IHC was performed using four or five covalently deposited chromogens and hematoxylin nuclear stain to preserve morphological context and detail. Brightfield illumination was provided with a tungsten lamp/filter wheel combination or filtered light emitting diodes to provide up to 12 illumination wavelengths. In addition, an automated rapid imaging system was developed, using a synchronized 12-LED illuminator, that could capture images at all wavelengths in under 1 s. In one example, a four-biomarker multiplex assay was designed and used to distinguish regions of adenocarcinoma and squamous cell carcinoma in non-small cell lung cancer. The technology was also validated with a five-biomarker assay in prostate cancer. Spectrally unmixed images of each biomarker demonstrated concordant expression patterns with DAB single stain on serial sections, indicating faithful identification of each biomarker. In each assay, all chromogens were well resolved by spectral unmixing to remove spectral crosstalk. While further characterization and refinement of the assay, and improvements in automation and user interface are necessary for pathologist acceptance, this approach to multiplex IHC and multispectral imaging has the potential to accelerate adoption of multiplexing by combining the medical value of high-order multiplexing with the speed, pathologist familiarity, and broadly established clinical utility of brightfield microscopy.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Diagnóstico por Imagem/métodos , Imuno-Histoquímica/métodos , Neoplasias Pulmonares/metabolismo , Coloração e Rotulagem/métodos , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Imunofluorescência/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Microscopia de Fluorescência/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Microambiente Tumoral
3.
Lab Invest ; 97(7): 873-885, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28504684

RESUMO

The ability to simultaneously visualize the presence, abundance, location and functional state of many targets in cells and tissues has been described as a true next-generation approach in immunohistochemistry (IHC). A typical requirement for multiplex IHC (mIHC) is the use of different animal species for each primary (1°Ab) and secondary (2°Ab) antibody pair. Although 1°Abs from different species have been used with differently labeled species-specific 2°Abs, quite often the appropriate combination of antibodies is not available. More recently, sequential detection of multiple antigens using 1°Abs from the same species used a microwaving treatment between successive antigen detection cycles to elute previously bound 1°Ab/2°Ab complex and therefore to prevent the cross-reactivity of anti-species 2°Abs used in subsequent detection cycles. We present here a fully automated 1°Ab/2°Ab complex heat deactivation (HD) method on Ventana's BenchMark ULTRA slide stainer. This method is applied to detection using fluorophore-conjugated tyramide deposited on the tissue and takes advantage of the strong covalent bonding of the detection substrate to the tissue, preventing its elution in the HD process. The HD process was characterized for (1) effectiveness in preventing Ab cross-reactivity, (2) impact on the epitopes and (3) impact on the fluorophores. An automated 5-plex fluorescent IHC assay was further developed using the HD method and rabbit 1°Abs for CD3, CD8, CD20, CD68 and FoxP3 immune biomarkers in human tissue specimens. The fluorophores were carefully chosen and the narrow-band filters were designed to allow visualization of the staining under fluorescent microscope with minimal bleed through. The automated 5-plex fluorescent IHC assay achieved staining results comparable to the respective single-plex chromogenic IHC assays. This technology enables automated mIHC using unmodified 1°Abs from same species and the corresponding anti-species 2°Ab on a clinically established automated platform to ensure staining quality, reliability and reproducibility.


Assuntos
Amidas/química , Anticorpos/química , Corantes Fluorescentes/química , Processamento de Imagem Assistida por Computador/métodos , Imuno-Histoquímica/métodos , Amidas/metabolismo , Anticorpos/metabolismo , Mama/química , Feminino , Corantes Fluorescentes/metabolismo , Humanos , Neoplasias/química , Tonsila Palatina/química , Reprodutibilidade dos Testes
4.
Lab Invest ; 97(1): 104-113, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27869794

RESUMO

Multiplexed analysis of multiple biomarkers in a tissue sample requires use of reporter dyes with specific spectral properties that enable discrimination of signals. Conventional chromogens with broad absorbance spectra, widely used in immunohistochemistry (IHC), offer limited utility for multiplexed detection. Many dyes with narrow absorbance spectra, eg rhodamines, fluoresceins, and cyanines, potentially useful for multiplexed detection are well-characterized; however, generation of a chromogenic reagent useful for IHC analysis has not been demonstrated. Studies reported herein demonstrate utility of tyramine-chemistry for synthesis of a wide variety of new chromogenic dye conjugates useful for multiplexed in situ analysis using conventional light microscopes. The dyes, useful individually or in blends to generate new colors, provide signal sensitivity and dynamic range similar to conventional DAB chromogen, while enabling analysis of co-localized biomarkers. It is anticipated that this new paradigm will enable generation of a wide variety of new chromogens, useful for both research and clinical biomarker analysis that will benefit clinicians and patients.


Assuntos
Biomarcadores/análise , Compostos Cromogênicos/química , Corantes/química , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , 3,3'-Diaminobenzidina/química , Biomarcadores/química , Compostos Cromogênicos/síntese química , Corantes/síntese química , Humanos , Modelos Químicos , Estrutura Molecular , Reprodutibilidade dos Testes , Tiramina/química
5.
Carbohydr Res ; 351: 121-5, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22342206

RESUMO

A simplified method for the preparation of Fmoc-serine and Fmoc-threonine glycosides for use in O-linked glycopeptide synthesis is described. Lewis acids promote glycoside formation, but also promote undesired reactions of the glycoside products. Use of 'minimally competent' Lewis acids such as InBr(3) promotes the desired activation catalytically, and with greatly reduced side products from sugar peracetates.


Assuntos
Acetatos/química , Aminoácidos/química , Índio/química , Ácidos de Lewis/química , Catálise , Glicosilação
6.
Future Med Chem ; 4(2): 205-26, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22300099

RESUMO

Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood-brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates.


Assuntos
Analgésicos Opioides/farmacologia , Endorfinas/química , Encefalinas/química , Glicopeptídeos/farmacologia , Sequência de Aminoácidos , Analgésicos Opioides/química , Analgésicos Opioides/farmacocinética , Barreira Hematoencefálica , Glicopeptídeos/química , Glicosilação , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...