Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 98(5): 2855-9, 2001 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-11226330

RESUMO

In myocardial ischemia, adrenergic nerves release excessive amounts of norepinephrine (NE), causing dysfunction and arrhythmias. With anoxia and the concomitant ATP depletion, vesicular storage of NE is impaired, resulting in accumulation of free NE in the axoplasm of sympathetic nerves. Intraneuronal acidosis activates the Na(+)/H(+) exchanger (NHE), leading to increased Na(+) entry in the nerve terminals. These conditions favor availability of the NE transporter to the axoplasmic side of the membrane, causing massive carrier-mediated efflux of free NE. Neuronal NHE activation is pivotal in this process; NHE inhibitors attenuate carrier-mediated NE release. We previously reported that activation of histamine H(3) receptors (H(3)R) on cardiac sympathetic nerves also reduces carrier-mediated NE release and alleviates arrhythmias. Thus, H(3)R activation may be negatively coupled to NHE. We tested this hypothesis in individual human SKNMC neuroblastoma cells stably transfected with H(3)R cDNA, loaded with the intracellular pH (pH(i)) indicator BCECF. These cells possess amiloride-sensitive NHE. NHE activity was measured as the rate of Na(+)-dependent pH(i) recovery in response to an acute acid pulse (NH(4)Cl). We found that the selective H(3)R-agonist imetit markedly diminished NHE activity, and so did the amiloride derivative EIPA. The selective H(3)R antagonist thioperamide abolished the imetit-induced NHE attenuation. Thus, our results provide a link between H(3)R and NHE, which may limit the excessive release of NE during protracted myocardial ischemia. Our previous and present findings uncover a novel mechanism of cardioprotection: NHE inhibition in cardiac adrenergic neurons as a means to prevent ischemic arrhythmias associated with carrier-mediated NE release.


Assuntos
Isquemia Miocárdica/prevenção & controle , Neurônios/metabolismo , Receptores Histamínicos H3/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Linhagem Celular , Isquemia Miocárdica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...