Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 17(10): 2203-2219, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150382

RESUMO

We have developed an efficient approach to generate functional induced dopaminergic (DA) neurons from adult human dermal fibroblasts. When performing DA neuronal conversion of patient fibroblasts with idiopathic Parkinson's disease (PD), we could specifically detect disease-relevant pathology in these cells. We show that the patient-derived neurons maintain age-related properties of the donor and exhibit lower basal chaperone-mediated autophagy compared with healthy donors. Furthermore, stress-induced autophagy resulted in an age-dependent accumulation of macroautophagic structures. Finally, we show that these impairments in patient-derived DA neurons leads to an accumulation of phosphorylated alpha-synuclein, the classical hallmark of PD pathology. This pathological phenotype is absent in neurons generated from induced pluripotent stem cells from the same patients. Taken together, our results show that direct neural reprogramming can be used for obtaining patient-derived DA neurons, which uniquely function as a cellular model to study age-related pathology relevant to idiopathic PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Adulto , Autofagia/fisiologia , Neurônios Dopaminérgicos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Doença de Parkinson/genética , alfa-Sinucleína/genética
2.
Cell Reprogram ; 24(5): 228-251, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749150

RESUMO

Understanding the pathophysiology of CNS-associated neurological diseases has been hampered by the inaccessibility of patient brain tissue to perform live analyses at the molecular level. To this end, neural cells obtained by differentiation of patient-derived induced pluripotent stem cells (iPSCs) are considerably helpful, especially in the context of monogenic-based disorders. More recently, the use of direct reprogramming to convert somatic cells to neural cells has emerged as an alternative to iPSCs to generate neurons, astrocytes, and oligodendrocytes. This review focuses on the different studies that used direct neural reprogramming to study disease-associated phenotypes in the context of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Astrócitos , Diferenciação Celular , Reprogramação Celular , Humanos , Neurônios
3.
Methods Mol Biol ; 2352: 97-115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324182

RESUMO

Since the first demonstration of direct dopaminergic neuronal reprogramming, over a dozen methods have been developed to generate induced dopaminergic neurons from various sources of cells. Here, we first present an overview of the different methods to generate induced neurons of a generic type and of different subtypes, with a particular focus on induced dopaminergic neurons generated from human fibroblasts. We then describe a protocol to generate induced dopaminergic neurons from commercially available human fetal lung fibroblasts. These cells could serve for various biomedical application, including regenerative medicine for conditions such as Parkinson's disease.


Assuntos
Transdiferenciação Celular , Técnicas de Reprogramação Celular , Reprogramação Celular , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Fatores de Transcrição/genética
4.
Sci Rep ; 11(1): 1514, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452356

RESUMO

The direct reprogramming of adult skin fibroblasts to neurons is thought to be controlled by a small set of interacting gene regulators. Here, we investigate how the interaction dynamics between these regulating factors coordinate cellular decision making in direct neuronal reprogramming. We put forward a quantitative model of the governing gene regulatory system, supported by measurements of mRNA expression. We found that nPTB needs to feed back into the direct neural conversion network most likely via PTB in order to accurately capture quantitative gene interaction dynamics and correctly predict the outcome of various overexpression and knockdown experiments. This was experimentally validated by nPTB knockdown leading to successful neural conversion. We also proposed a novel analytical technique to dissect system behaviour and reveal the influence of individual factors on resulting gene expression. Overall, we demonstrate that computational analysis is a powerful tool for understanding the mechanisms of direct (neuronal) reprogramming, paving the way for future models that can help improve cell conversion strategies.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular/fisiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Idoso , Reprogramação Celular/genética , Biologia Computacional/métodos , Feminino , Fibroblastos/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Pessoa de Meia-Idade , Modelos Teóricos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Cultura Primária de Células , Processos Estocásticos , Fatores de Transcrição/metabolismo
5.
Mov Disord ; 35(3): 401-408, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31724242

RESUMO

BACKGROUND: Although Huntington's disease (HD) is caused by a single dominant gene, it is clear that there are genetic modifiers that may influence the age of onset and disease progression. OBJECTIVES: We sought to investigate whether new inflammation-related genetic variants may contribute to the onset and progression of HD. METHODS: We first used postmortem brain material from patients at different stages of HD to look at the protein expression of toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells 2 (TREM2). We then genotyped the TREM2 R47H gene variant and 3 TLR4 single nucleotide polymorphisms in a large cohort of HD patients from the European Huntington's Disease Network REGISTRY. RESULTS: We found an increase in the number of cells expressing TREM2 and TLR4 in postmortem brain samples from patients dying with HD. We also found that the TREM2 R47H gene variant was associated with changes in cognitive decline in the large cohort of HD patients, whereas 2 of 3 TLR4 single nucleotide polymorphisms assessed were associated with changes in motor progression in this same group. CONCLUSIONS: These findings identify TREM2 and TLR4 as potential genetic modifiers for HD and suggest that inflammation influences disease progression in this condition. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alzheimer , Doença de Huntington , Encéfalo , Humanos , Doença de Huntington/genética , Glicoproteínas de Membrana/genética , Células Mieloides , Receptores Imunológicos/genética , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...