Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS J ; 26(4): 68, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862748

RESUMO

Bispecific and multispecific agents have become increasingly utilized in cancer treatment and immunotherapy, yet their complex design parameters present a challenge in developing successful therapeutics. Bispecifics that crosslink receptors on two opposing cells can provide specific activation of a receptor only when these cells are in close spatial proximity, such as an immune cell and cancer cell in a tumor. These agents, including T cell activating bispecifics, can avoid off-tumor toxicity through activation only in the tumor microenvironment by utilizing a tumor target to cluster T-cell receptors for a selective costimulatory signal. Here, we investigate a panel of PD-1/CD137 targeted Humabody VH domains to determine the key factors for T cell activation, such as affinity, valency, expression level, domain orientation, and epitope location. Target expression is a dominant factor determining both specificity and potency of T cell activation. Given an intrinsic expression level, the affinity can be tuned to modulate the level of activation and IC50 and achieve specificity between low and high expression levels. Changing the epitope location and linker length showed minor improvements to activation at low expression levels, but increasing the valency for the target decreased activation at all expression levels. By combining non-overlapping epitopes for the target, we achieved higher receptor activation at low expression levels. A kinetic model was able to capture these trends, offering support for the mechanistic interpretation. This work provides a framework to quantify factors for T cell activation by cell-crosslinking bispecific agents and guiding principles for the design of new agents.


Assuntos
Anticorpos Biespecíficos , Ativação Linfocitária , Receptor de Morte Celular Programada 1 , Linfócitos T , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Humanos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Receptor de Morte Celular Programada 1/imunologia , Reagentes de Ligações Cruzadas/química , Desenho de Fármacos
2.
Clin Cancer Res ; 30(8): 1595-1606, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593226

RESUMO

PURPOSE: CD137 is a T- and NK-cell costimulatory receptor involved in consolidating immunologic responses. The potent CD137 agonist urelumab has shown clinical promise as a cancer immunotherapeutic but development has been hampered by on-target off-tumor toxicities. A CD137 agonist targeted to the prostate-specific membrane antigen (PSMA), frequently and highly expressed on castration-resistant metastatic prostate cancer (mCRPC) tumor cells, could bring effective immunotherapy to this immunologically challenging to address disease. EXPERIMENTAL DESIGN: We designed and manufactured CB307, a novel half-life extended bispecific costimulatory Humabody VH therapeutic to elicit CD137 agonism exclusively in a PSMA-high tumor microenvironment (TME). The functional activity of CB307 was assessed in cell-based assays and in syngeneic mouse antitumor pharmacology studies. Nonclinical toxicology and toxicokinetic properties of CB307 were assessed in a good laboratory practice (GLP) compliant study in cynomolgus macaques. RESULTS: CB307 provides effective CD137 agonism in a PSMA-dependent manner, with antitumor activity both in vitro and in vivo, and additional activity when combined with checkpoint inhibitors. A validated novel PSMA/CD137 IHC assay demonstrated a higher prevalence of CD137-positive cells in the PSMA-expressing human mCRPC TME with respect to primary lesions. CB307 did not show substantial toxicity in nonhuman primates and exhibited a plasma half-life supporting weekly clinical administration. CONCLUSIONS: CB307 is a first-in-class immunotherapeutic that triggers potent PSMA-dependent T-cell activation, thereby alleviating toxicologic concerns against unrestricted CD137 agonism.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Camundongos , Animais , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Imunoterapia/métodos , Microambiente Tumoral
3.
Neoplasia ; 48: 100962, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38183712

RESUMO

Bispecific agents are a rapidly growing class of cancer therapeutics, and immune targeted bispecific agents have the potential to expand functionality well beyond monoclonal antibody agents. Humabodies⁎ are fully human single domain antibodies that can be linked in a modular fashion to form multispecific therapeutics. However, the effect of heterogeneous delivery on the efficacy of crosslinking bispecific agents is currently unclear. In this work, we utilize a PSMA-CD137 Humabody with an albumin binding half-life extension (HLE) domain to determine the impact of tissue penetration on T cell activating bispecific agents. Using heterotypic spheroids, we demonstrate that increased tissue penetration results in higher T cell activation at sub-saturating concentrations. Next, we tested the effect of two different albumin binding moieties on tissue distribution using albumin-specific HLE domains with varying affinities for albumin and a non-specific lipophilic dye. The results show that a specific binding mechanism to albumin does not influence tissue penetration, but a non-specific mechanism reduced both spheroid uptake and distribution in the presence of albumin. These results highlight the potential importance of tissue penetration on bispecific agent efficacy and describe how the design parameters including albumin-binding domains can be selected to maximize the efficacy of bispecific agents.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Neoplasias , Humanos , Linfócitos T , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/química , Albuminas/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico
4.
Insects ; 14(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37887808

RESUMO

The cassava whitefly Bemisia tabaci causes damage in cassava through the feeding and vectoring of plant viruses that cause cassava mosaic and cassava brown streak diseases. This study sought to explore the efficacy of cutting dipping in flupyradifurone for whitefly control and the impact of the mode of application on whitefly parasitism under farmer field conditions. The insecticide treatment significantly reduced adult whiteflies by 41%, nymphs by 64%, and cassava mosaic disease (CMD) incidence by 16% and increased root yield by 49%. The whitefly parasitism rate by Encarsia spp. parasitoids was 27.3 and 21.1%, while Eretmocerus spp. had 26.7 and 18.0% in control and flupyradifurone, respectively, and these differences were not significant. Electropenetrography recordings of whitefly feeding behaviour on flupyradifurone-treated plants showed significantly reduced probing activity and a delay in reaching the phloem as compared to the control. The findings from this study demonstrated that cassava cutting dipping in flupyradifurone significantly reduces whitefly numbers and cassava mosaic disease incidence, thus contributing to a significant root yield increase in cassava. Flupyradifurone applied through cutting dips does not significantly impact parasitism rates in cassava fields. Routine monitoring of parasitoids and predators in insecticide-treated versus control fields should be emphasized to determine the impact of pesticides on these beneficial non-target organisms.

5.
Heliyon ; 9(3): e13854, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895396

RESUMO

Pests and diseases are key biotic constraints limiting banana production among smallholder farmers in Eastern and Central Africa. Climate changemay favour pest and disease development and further exacerbate the vulnerability of smallholder farming systems to biotic constraints. Information on effects of climate change on pests and pathogens of banana is required byby policy makers and researchers in designing control strategies and adaptation plans. Since altitude is inversely related to temperature, this study used the occurrence of key banana pests and diseases along an altitude gradient as a proxy for the potential impact of changes in temperature associated with global warming on pests and diseases. We assessed the occurrence of banana pests and diseases in 93 banana fields across three altitude ranges in Burundi and 99 fields distributed in two altitude ranges in Rwanda watersheds. Incidence and prevalence of Banana Bunchy Top Disease (BBTD) and Fusarium wilt (FW) was significantly associated with temperature and altitude in Burundi, revealing that increasing temperatures may lead to upward movement of banana diseases. No significant associations with temperature and altitude were observed for weevils, nematodes and Xanthomonas wilt of banana (BXW). Data collected in this study provides a baseline to verify and guide modelling work to predict future pest and disease distribution according to climate change scenarios. Such information is useful in informing policy makers and designing appropriate management strategies.

6.
Viruses ; 14(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36298720

RESUMO

A comprehensive assessment of cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) was carried out in Comoros where cassava yield (5.7 t/ha) is significantly below the African average (8.6 t/ha) largely due to virus diseases. Observations from 66 sites across the Comoros Islands of Mwali, Ngazidja, and Ndzwani revealed that 83.3% of cassava fields had foliar symptoms of CBSD compared with 95.5% for CMD. Molecular diagnostics confirmed the presence of both cassava brown streak ipomoviruses (CBSIs) and cassava mosaic begomoviruses (CMBs). Although real-time RT-PCR only detected the presence of one CBSI species (Cassava brown streak virus, CBSV) the second species (Ugandan cassava brown streak virus, UCBSV) was identified using next-generation high-throughput sequencing. Both PCR and HTS detected the presence of East African cassava mosaic virus (EACMV). African cassava mosaic virus was not detected in any of the samples. Four whitefly species were identified from a sample of 131 specimens: Bemisia tabaci, B. afer, Aleurodicus dispersus, and Paraleyrodes bondari. Cassava B. tabaci comprised two mitotypes: SSA1-SG2 (89%) and SSA1-SG3 (11%). KASP SNP genotyping categorized 82% of cassava B. tabaci as haplogroup SSA-ESA. This knowledge will provide an important base for developing and deploying effective management strategies for cassava viruses and their vectors.


Assuntos
Hemípteros , Manihot , Animais , Comores , Doenças das Plantas
7.
Insects ; 13(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36292868

RESUMO

A novel butenolide insecticide-flupyradifurone (Sivanto SL 200)-was evaluated for efficacy against cassava-colonizing Bemisia tabaci whitefly under laboratory, screenhouse and field conditions. LC50 values from leaf disc spray assays were comparable for both flupyradifurone (12.7 g a.i/100 L) and imidacloprid (12.6 g a.i/100 L). Both insecticides caused high levels of adult whitefly mortality in leaf disc and leaf dip assays when compared to untreated controls. In screenhouse-based trials, longer soaking (60 min) with flupyradifurone or imidacloprid was more effective than shorter soaking durations (15 or 30 min). In field spraying experiments, flupyradifurone significantly reduced whiteflies, and both insecticides demonstrated powerful knockdown effects on whitefly adult abundances over a period up to 24 h. Single cutting dip application of flupyradifurone reduced whitefly adult abundance by 2 to 6 times, and nymphs by 2 to 13 times. Lower whitefly abundances resulting from insecticide application reduced the incidence of CMD or CBSD. In addition, in field experiments, whiteflies were fewer during the long rainy season (Masika) and on cassava variety Mkuranga1. The findings from this study demonstrate that cutting dips with flupyradifurone could be incorporated as a management tactic against cassava whiteflies. This would ideally be combined in an IPM strategy with other cassava virus and virus vector management tactics including host-plant resistance, phytosanitation and the use of clean seed.

8.
Insects ; 13(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36135550

RESUMO

The present study characterizes Bemisia tabaci and Bemisia afer from cassava in eastern Democratic Republic of Congo (DRC). The Mitochondrial COI sequencing revealed the occurrence of six cassava B. tabaci mitotypes, which were designated into four haplogroups (SSA-ECA, SSA-CA, SSA2, and SSA-ESA) using KASP SNP genotyping. SSA-ECA (72%) was the most prevalent and occurred in the northern part of the surveyed area, in the Ituri and Nord/Sud-Kivu provinces, whilst SSA-CA (21%) was present in the south, primarily in Haut-Katanga. SSA-ECA was predominant in the areas of north-eastern DRC most severely affected by cassava brown streak disease and was also reported in the new outbreak area in Pweto territory, Haut-Katanga, in the south. Bemisia afer comprised two major clusters with 85.5% of samples in cluster one, while the rest were in cluster two, which has no reference sequence in GenBank. This study provides important information on the genetic diversity of B. tabaci and B. afer in eastern DRC. This knowledge will be used as a basis for further studies to understand and to identify the role of whitefly haplogroups, their population densities and consequences for virus epidemics and spread as well as leading to improved vector and virus management strategies.

9.
Sci Rep ; 12(1): 3113, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210452

RESUMO

Cassava brown streak disease (CBSD) is an emerging viral disease that can greatly reduce cassava productivity, while causing only mild aerial symptoms that develop late in infection. Early detection of CBSD enables better crop management and intervention. Current techniques require laboratory equipment and are labour intensive and often inaccurate. We have developed a handheld active multispectral imaging (A-MSI) device combined with machine learning for early detection of CBSD in real-time. The principal benefits of A-MSI over passive MSI and conventional camera systems are improved spectral signal-to-noise ratio and temporal repeatability. Information fusion techniques further combine spectral and spatial information to reliably identify features that distinguish healthy cassava from plants with CBSD as early as 28 days post inoculation on a susceptible and a tolerant cultivar. Application of the device has the potential to increase farmers' access to healthy planting materials and reduce losses due to CBSD in Africa. It can also be adapted for sensing other biotic and abiotic stresses in real-world situations where plants are exposed to multiple pest, pathogen and environmental stresses.


Assuntos
Potyviridae/patogenicidade , Espectrofotometria/métodos , Viroses/diagnóstico , Resistência à Doença , Diagnóstico Precoce , Aprendizado de Máquina , Manihot/virologia , Fotometria/instrumentação , Fotometria/métodos , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , RNA Viral , Espectrofotometria/instrumentação
10.
Br J Cancer ; 126(8): 1168-1177, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34969998

RESUMO

BACKGROUND: Improving cancer immunotherapy long-term clinical benefit is a major priority. It has become apparent that multiple axes of immune suppression restrain the capacity of T cells to provide anti-tumour activity including signalling through PD1/PD-L1 and LAG3/MHC-II. METHODS: CB213 has been developed as a fully human PD1/LAG3 co-targeting multi-specific Humabody composed of linked VH domains that avidly bind and block PD1 and LAG3 on dual-positive T cells. We present the preclinical primary pharmacology of CB213: biochemistry, cell-based function vs. immune-suppressive targets, induction of T cell proliferation ex vivo using blood obtained from NSCLC patients, and syngeneic mouse model anti-tumour activity. CB213 pharmacokinetics was assessed in cynomolgus macaques. RESULTS: CB213 shows picomolar avidity when simultaneously engaging PD1 and LAG3. Assessing LAG3/MHC-II or PD1/PD-L1 suppression individually, CB213 preferentially counters the LAG3 axis. CB213 showed superior activity vs. αPD1 antibody to induce ex vivo NSCLC patient T cell proliferation and to suppress tumour growth in a syngeneic mouse tumour model, for which both experimental systems possess PD1 and LAG3 suppressive components. Non-human primate PK of CB213 suggests weekly clinical administration. CONCLUSIONS: CB213 is poised to enter clinical development and, through intercepting both PD1 and LAG3 resistance mechanisms, may benefit patients with tumours escaping front-line immunological control.


Assuntos
Antígenos CD/imunologia , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígenos CD/metabolismo , Antígeno B7-H1 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Receptor de Morte Celular Programada 1 , Linfócitos T , Proteína do Gene 3 de Ativação de Linfócitos
11.
Emerg Top Life Sci ; 5(2): 275-287, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33720345

RESUMO

Plant pests and diseases impact both food security and natural ecosystems, and the impact has been accelerated in recent years due to several confounding factors. The globalisation of trade has moved pests out of natural ranges, creating damaging epidemics in new regions. Climate change has extended the range of pests and the pathogens they vector. Resistance to agrochemicals has made pathogens, pests, and weeds more difficult to control. Early detection is critical to achieve effective control, both from a biosecurity as well as an endemic pest perspective. Molecular diagnostics has revolutionised our ability to identify pests and diseases over the past two decades, but more recent technological innovations are enabling us to achieve better pest surveillance. In this review, we will explore the different technologies that are enabling this advancing capability and discuss the drivers that will shape its future deployment.


Assuntos
Mudança Climática , Ecossistema , Plantas Daninhas
12.
Insects ; 11(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167394

RESUMO

Bemisia tabaci is an important vector of cassava brown streak viruses and cassava mosaic begomoviruses, the causal agents of cassava brown streak disease and cassava mosaic disease (CMD), respectively. A study was carried out to determine the genetic variability of B. tabaci associated with cassava and the occurrence of CMD in Zambia in 2013 and 2015. Phylogenetic analysis showed the presence of only the sub-Saharan Africa 1 (SSA1) genetic group in Zambia. The SSA1 population had three population subgroups (SGs): SSA1-SG1, SSA1-SG2 and SSA1-SG3. All three SSA1 population subgroups occurred in Western Province. However, only SSA1-SG3 occurred in Eastern Province, while only SSA1-SG1 occurred in North Western and Luapula Provinces. Adult B. tabaci were most abundant in Western Province in 2013 (11.1/plant) and 2015 (10.8/plant), and least abundant (0.2/plant) in Northern Province in both 2013 and 2015. CMD was prevalent in all seven provinces surveyed, with the highest incidence recorded in Lusaka Province in both 2013 (78%) and 2015 (83.6%), and the lowest in Northern Province in both 2013 (26.6%) and 2015 (29.3%). Although SSA1-SG1 occurred at greater abundances than the other subgroups, there was no direct association demonstrated between whitefly subgroup and incidence of CMD. Establishing which B. tabaci genetic groups and populations are associated with CMD and their distribution in the country is a key factor in guiding the development of CMD control strategies for cassava-dependent households.

13.
Bioscience ; 70(9): 744-758, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32973407

RESUMO

The geographic pattern of cropland is an important risk factor for invasion and saturation by crop-specific pathogens and arthropods. Understanding cropland networks supports smart pest sampling and mitigation strategies. We evaluate global networks of cropland connectivity for key vegetatively propagated crops (banana and plantain, cassava, potato, sweet potato, and yam) important for food security in the tropics. For each crop, potential movement between geographic location pairs was evaluated using a gravity model, with associated uncertainty quantification. The highly linked hub and bridge locations in cropland connectivity risk maps are likely priorities for surveillance and management, and for tracing intraregion movement of pathogens and pests. Important locations are identified beyond those locations that simply have high crop density. Cropland connectivity risk maps provide a new risk component for integration with other factors-such as climatic suitability, genetic resistance, and global trade routes-to inform pest risk assessment and mitigation.

14.
Insects ; 11(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423055

RESUMO

Bemisia tabaci is a cryptic species complex that requires the use of molecular tools for identification. The most widely used approach for achieving this is the partial sequencing of the mitochondrial DNA cytochrome oxidase I gene (COI). A more reliable single nucleotide polymorphism (SNP)-based genotyping approach, using Nextera restriction-site-associated DNA (NextRAD) sequencing, has demonstrated the existence of six major haplogroups of B. tabaci on cassava in Africa. However, NextRAD sequencing is costly and time-consuming. We, therefore, developed a cheaper and more rapid diagnostic using the Kompetitive Allele-Specific PCR (KASP) approach. Seven sets of primers were designed to distinguish the six B. tabaci haplogroups based on the NextRAD data. Out of the 152 whitefly samples that were tested using these primer sets, 151 (99.3%) produced genotyping results consistent with NextRAD. The KASP assay was designed using NextRAD data on whiteflies from cassava in 18 countries across sub-Saharan Africa. This assay can, therefore, be routinely used to rapidly diagnose cassava B. tabaci by laboratories that are researching or monitoring this pest in Africa. This is the first study to develop an SNP-based assay to distinguish B. tabaci whiteflies on cassava in Africa, and the first application of the KASP technique for insect identification.

15.
Virus Res ; 286: 198017, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461191

RESUMO

Cassava brown steak disease (CBSD), caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), is the most important biotic constraint to cassava production in East and Central Africa. Concerted efforts are required to prevent further spread into West Africa as well as to reduce losses in areas already affected. The study reported here was part of a five-country (Kenya, Malawi, Mozambique, Tanzania and Uganda) programme that aimed to identify superior cassava cultivars resistant to CBSD and to disseminate them widely in the region. Seventeen tissue-cultured and virus-tested cultivars were evaluated in Tanzania across nine sites with diverse CBSD inoculum conditions. Experiments were planted using an alpha-lattice design and assessments were made of surrounding inoculum pressure, CBSD foliar and root incidence and root yield at harvest. There were large differences in CBSD infection between sites, with greatest spread recorded from the north-western Lake (Victoria) zone. Differences were driven by Bemisia tabaci whitefly vector abundance and CBSD inoculum pressure. Both CBSV and UCBSV were almost equally represented in cassava fields surrounding experimental plots, although CBSV predominated in the north-west whilst UCBSV was more frequent in coastal and southern sites. However, the incidence of CBSV was much greater than that of UCBSV in initially virus-free experimental plots, suggesting that CBSV is more virulent. Cultivars could be categorised into three groups based on the degree of CBSD symptom expression in shoots and roots. The seven cultivars (F10_30R2, Eyope, Mkumba, Mkuranga1, Narocass1, Nase3 and Orera) in the most resistant category each had shoot and root incidences of less than 20%. Fresh root yield differed between sites and cultivars, but there was no genotype by environment interaction for this trait, probably attributable to the large fertility and soil moisture differences between sites. Susceptible cultivars and the local check performed well in the absence of CBSD pressure, highlighting the importance of exploiting quality and yield traits of local landraces in breeding programmes. Overall, our results emphasized the importance of applying a balanced strategy for CBSD management. This should use both improved and local germplasm resources to generate high yielding cultivars for specific end-user traits, and combine the deployment of improved cultivars with phytosanitary control measures including the use of healthy planting material and planting during periods of reduced CBSD infection.


Assuntos
Resistência à Doença/genética , Manihot/virologia , Doenças das Plantas/virologia , Potyviridae/genética , Genótipo , Filogenia , Doenças das Plantas/genética , RNA Viral/genética , Análise de Sequência de DNA , Tanzânia
16.
Insects ; 11(1)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963536

RESUMO

Bemisia tabaci (Gennadius) is a polyphagous, highly destructive pest that is capable of vectoring viruses in most agricultural crops. Currently, information regarding the distribution and genetic diversity of B. tabaci in South Sudan is not available. The objectives of this study were to investigate the genetic variability of B. tabaci infesting sweet potato and cassava in South Sudan. Field surveys were conducted between August 2017 and July and August 2018 in 10 locations in Juba County, Central Equatoria State, South Sudan. The sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) were used to determine the phylogenetic relationships between sampled B. tabaci. Six distinct genetic groups of B. tabaci were identified, including three non-cassava haplotypes (Mediterranean (MED), Indian Ocean (IO), and Uganda) and three cassava haplotypes (Sub-Saharan Africa 1 sub-group 1 (SSA1-SG1), SSA1-SG3, and SSA2). MED predominated on sweet potato and SSA2 on cassava in all of the sampled locations. The Uganda haplotype was also widespread, occurring in five of the sampled locations. This study provides important information on the diversity of B. tabaci species in South Sudan. A comprehensive assessment of the genetic diversity, geographical distribution, population dynamics, and host range of B. tabaci species in South Sudan is vital for its effective management.

17.
Cancer Res ; 80(6): 1268-1278, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941698

RESUMO

Targeted delivery of chemotherapeutics aims to increase efficacy and lower toxicity by concentrating drugs at the site-of-action, a method embodied by the seven current FDA-approved antibody-drug conjugates (ADC). However, a variety of pharmacokinetic challenges result in relatively narrow therapeutic windows for these agents, hampering the development of new drugs. Here, we use a series of prostate-specific membrane antigen-binding single-domain (Humabody) ADC constructs to demonstrate that tissue penetration of protein-drug conjugates plays a major role in therapeutic efficacy. Counterintuitively, a construct with lower in vitro potency resulted in higher in vivo efficacy than other protein-drug conjugates. Biodistribution data, tumor histology images, spheroid experiments, in vivo single-cell measurements, and computational results demonstrate that a smaller size and slower internalization rate enabled higher tissue penetration and more cell killing. The results also illustrate the benefits of linking an albumin-binding domain to the single-domain ADCs. A construct lacking an albumin-binding domain was rapidly cleared, leading to lower tumor uptake (%ID/g) and decreased in vivo efficacy. In conclusion, these results provide evidence that reaching the maximum number of cells with a lethal payload dose correlates more strongly with in vivo efficacy than total tumor uptake or in vitro potency alone for these protein-drug conjugates. Computational modeling and protein engineering can be used to custom design an optimal framework for controlling internalization, clearance, and tissue penetration to maximize cell killing. SIGNIFICANCE: A mechanistic study of protein-drug conjugates demonstrates that a lower potency compound is more effective in vivo than other agents with equal tumor uptake due to improved tissue penetration and cellular distribution.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Imunoconjugados/farmacocinética , Modelos Biológicos , Neoplasias da Próstata/tratamento farmacológico , Anticorpos de Domínio Único/farmacologia , Animais , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Simulação por Computador , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Masculino , Camundongos , Microscopia Confocal , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/uso terapêutico , Esferoides Celulares , Relação Estrutura-Atividade , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Front Plant Sci ; 11: 590889, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391304

RESUMO

Nuru is a deep learning object detection model for diagnosing plant diseases and pests developed as a public good by PlantVillage (Penn State University), FAO, IITA, CIMMYT, and others. It provides a simple, inexpensive and robust means of conducting in-field diagnosis without requiring an internet connection. Diagnostic tools that do not require the internet are critical for rural settings, especially in Africa where internet penetration is very low. An investigation was conducted in East Africa to evaluate the effectiveness of Nuru as a diagnostic tool by comparing the ability of Nuru, cassava experts (researchers trained on cassava pests and diseases), agricultural extension officers and farmers to correctly identify symptoms of cassava mosaic disease (CMD), cassava brown streak disease (CBSD) and the damage caused by cassava green mites (CGM). The diagnosis capability of Nuru and that of the assessed individuals was determined by inspecting cassava plants and by using the cassava symptom recognition assessment tool (CaSRAT) to score images of cassava leaves, based on the symptoms present. Nuru could diagnose symptoms of cassava diseases at a higher accuracy (65% in 2020) than the agricultural extension agents (40-58%) and farmers (18-31%). Nuru's accuracy in diagnosing cassava disease and pest symptoms, in the field, was enhanced significantly by increasing the number of leaves assessed to six leaves per plant (74-88%). Two weeks of Nuru practical use provided a slight increase in the diagnostic skill of extension workers, suggesting that a longer duration of field experience with Nuru might result in significant improvements. Overall, these findings suggest that Nuru can be an effective tool for in-field diagnosis of cassava diseases and has the potential to be a quick and cost-effective means of disseminating knowledge from researchers to agricultural extension agents and farmers, particularly on the identification of disease symptoms and their management practices.

19.
Sci Data ; 6(1): 327, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852893

RESUMO

Cassava brown streak disease (CBSD) is currently the most devastating cassava disease in eastern, central and southern Africa affecting a staple crop for over 700 million people on the continent. A major outbreak of CBSD in 2004 near Kampala rapidly spread across Uganda. In the following years, similar CBSD outbreaks were noted in countries across eastern and central Africa, and now the disease poses a threat to West Africa including Nigeria - the biggest cassava producer in the world. A comprehensive dataset with 7,627 locations, annually and consistently sampled between 2004 and 2017 was collated from historic paper and electronic records stored in Uganda. The survey comprises multiple variables including data for incidence and symptom severity of CBSD and abundance of the whitefly vector (Bemisia tabaci). This dataset provides a unique basis to characterize the epidemiology and dynamics of CBSD spread in order to inform disease surveillance and management. We also describe methods used to integrate and verify extensive field records for surveys typical of emerging epidemics in subsistence crops.


Assuntos
Manihot/microbiologia , Doenças das Plantas/microbiologia , Animais , Monitoramento Ambiental , Hemípteros , Insetos Vetores , Uganda
20.
Plant Dis ; 103(10): 2652-2664, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31322490

RESUMO

Cassava brown streak disease (CBSD), caused by cassava brown streak ipomoviruses (CBSIs), has become the most debilitating biotic stress to cassava production in East and Central Africa. Lack of CBSD-resistant varieties has necessitated the search for alternative control measures. Most smallholder farmers reuse stems from previous crops for planting in the new season. Recycling planting material in this way can lead to "degeneration" owing to the compounding effects of disease. In this study, degeneration was defined as the increase in CBSD incidence and reduction in marketable root yield over time. An experiment was established to study the rates of degeneration in selected cassava varieties Chereko, KBH2002_135, Kipusa, Kizimbani, and Mkuranga1 and cultivars Kiroba and Kikombe under high-CBSD inoculum conditions in Bagamoyo, Tanzania from 2013 to 2017. The experiment was replicated across two seasons: the first planted during the long rains (Masika) between March and June and the second planted during the short rains (Vuli) between October and December. Mean abundance of the whitefly vector (Bemisia tabaci) was much greater during the Vuli season (>19 insects per plant) than the Masika season (<2 insects per plant). CBSD shoot symptoms occurred naturally and were observed only on Kikombe, Kiroba, and Kipusa. New materials had overall lower CBSD shoot incidences (1.5%) compared with recycled materials (6.9%) in Masika, although no significant differences were obvious in Vuli. However, Masika (8.7%) had an overall lower CBSD shoot incidence than Vuli (16.5%) in the varieties that had shoot symptoms. CBSD root incidences were higher in Vuli (10.3%) than Masika (4.4%), and root yields in Masika (29.4 t/ha) were significantly greater than those in Vuli (22.5 t/ha). The highest percentage of roots rendered unusable owing to CBSD was observed in Vuli. There was significantly higher unusable root incidence in recycled materials (3.7%) than in new materials (1.4%) in Masika but not in Vuli. Overall root yield was similar between recycled and new materials in either season. Significant reductions in root yield over the course of the experiment were observed both in Masika and Vuli, whereas changes in marketable yield were significant only in Masika. Differences in the response of varieties to degeneration led to the identification of four degeneration patterns, namely "strong," "moderate," "mild," and "delayed" degeneration. The strongest effects of degeneration were most obvious in the susceptible cultivar (Kikombe), which also had the lowest marketable yield in either season. Seasonal differences were a key driver of degeneration, because its effects were much greater in Vuli than Masika. To the best of our knowledge, this work reports the first study of degeneration caused by cassava viruses.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Manihot , Potyviridae , África Central , Animais , Manihot/microbiologia , Manihot/virologia , Doenças das Plantas/virologia , Potyviridae/fisiologia , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...