Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 47(10): 3364-74, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23615336

RESUMO

Fluorescence excitation-emission matrix (EEM) approach together with principal component analysis (PCA) was used for assessing hydraulically irreversible fouling of three pilot-scale ultrafiltration (UF) systems containing full-scale and bench-scale hollow fiber membrane modules in drinking water treatment. These systems were operated for at least three months with extensive cycles of permeation, combination of back-pulsing and scouring and chemical cleaning. The principal component (PC) scores generated from the PCA of the fluorescence EEMs were found to be related to humic substances (HS), protein-like and colloidal/particulate matter content. PC scores of HS- and protein-like matter of the UF feed water, when considered separately, showed reasonably good correlations with the rate of hydraulically irreversible fouling for long-term UF operations. In contrast, comparatively weaker correlations for PC scores of colloidal/particulate matter and the rate of hydraulically irreversible fouling were obtained for all UF systems. Since, individual correlations could not fully explain the evolution of the rate of irreversible fouling, multi-linear regression models were developed to relate the combined effect of HS-like, protein-like and colloidal/particulate matter PC scores to the rate of hydraulically irreversible fouling for each specific UF system. These multi-linear regression models revealed significant individual and combined contribution of HS- and protein-like matter to the rate of hydraulically irreversible fouling, with protein-like matter generally showing the greatest contribution. The contribution of colloidal/particulate matter to the rate of hydraulically irreversible fouling was not as significant. The addition of polyaluminum chloride, as coagulant, to UF feed appeared to have a positive impact in reducing hydraulically irreversible fouling by these constituents. The proposed approach has applications in quantifying the individual and synergistic contribution of major natural water constituents to the rate of hydraulically irreversible membrane fouling and shows potential for controlling UF irreversible fouling in the production of drinking water.


Assuntos
Água Potável , Ultrafiltração/métodos , Purificação da Água/instrumentação , Purificação da Água/métodos , Hidróxido de Alumínio/química , Coloides , Fluorescência , Água Doce/química , Substâncias Húmicas , Membranas Artificiais , Ontário , Material Particulado , Análise de Componente Principal , Proteínas/química , Ultrafiltração/instrumentação
2.
Water Sci Technol ; 63(10): 2427-33, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21977670

RESUMO

Identifying the extent of humic acid (HA)-like and fulvic acid (FA)-like natural organic matter (NOM) present in natural water is important to assess disinfection by-product formation and fouling potential during drinking water treatment applications. However, the unique fluorescence properties related to HA-like NOM is masked by the fluorescence signals of the more abundant FA-like NOM. For this reason, it is not possible to accurately characterize HA-like and FA-like NOM components in a single water sample using direct fluorescence EEM analysis. A relatively simple approach is described here that demonstrates the feasibility of using a fluorescence excitation-emission matrix (EEM) approach for identifying HA-like and FA-like NOM fractions in water when used in combination with a series of pH adjustments and filtration steps. It is demonstrated that the fluorescence EEMS of HA-like and FA-like NOM fractions from the river water sample possessed different spectral properties. Fractionation of HA-like and FA-like NOM prior to fluorescence analysis is therefore proposed as a more reasonable approach.


Assuntos
Benzopiranos/análise , Substâncias Húmicas/análise , Rios/química , Filtração , Concentração de Íons de Hidrogênio , Ontário , Espectrometria de Fluorescência
3.
Water Sci Technol ; 60(6): 1385-92, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19759440

RESUMO

A method that would allow for fast and reliable measurements of dissolved organic matter (DOM), both at low and high concentration levels would be a valuable tool for online monitoring of DOM. This could have applications in a variety of areas including membrane treatment systems for drinking water applications which is of interest to our group. In this study, the feasibility of using fluorescence spectroscopy for monitoring DOM at very low concentration levels was demonstrated with an emphasis on optimizing the instrument parameters necessary to obtain reproducible fluorescence signals. Signals were acquired using a cuvette or a fibre optic probe assembly, the latter which may have applications for on-line or in-line monitoring. The instrument parameters such as photomultiplier tube (PMT) voltage, scanning rate and slit width were studied in detail to find the optimum parameter settings required. The results showed that larger excitation and emission slit widths were preferred, over larger PMT voltage or lower scanning rates, to obtain reproducible and rapid measurements when measuring very low concentration levels of DOM. However, this approach should be implemented with caution to avoid any reduction of the signal resolution.


Assuntos
Compostos Orgânicos/química , Ingestão de Líquidos , Filtração , Nanotecnologia , Compostos Orgânicos/análise , Compostos Orgânicos/isolamento & purificação , Permeabilidade , Reprodutibilidade dos Testes , Solubilidade , Espectrometria de Fluorescência , Fatores de Tempo , Água/química , Purificação da Água
4.
Biodegradation ; 18(3): 311-6, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17004031

RESUMO

Four different aerobic mixed consortia collected from basins of wastewater streams coming out of dying plants of Crescent Textile (CT), Sitara Textile (ST), Chenab Fabrics (CF) and Noor Fatima Textile (NF), Faisalabad, Pakistan were applied for decolorization of Drimarene Orange K-GL, Drimarene Brilliant Red K-4BL, Foron Yellow SE4G and Foron Blue RDGLN for 10 days using the shake flask technique. CT culture showed the best decolorization potential on all dyestuffs followed by ST, NF and CF, respectively. CT could completely decolorize all dyes within 3-5 days. ST cultures showed effective decolorization potential on Foron Yellow SE4G and Drimarene Brilliant Red K-4BL but complete color removal was achieved after 4 and 7 days, respectively. NF culture showed 100% decolorization efficiencies on Foron Yellow SE4G and Foron Blue RDGLN but it took comparatively longer time periods (5-7 days). Where as, the NF culture had decolorized only 40% and 50% of Drimarene orange and red, respectively, after 10 days. CF caused complete decolorization of Foron Blue RDGLN and Drimarene Brilliant Red K-4BL after 4 and 8 days, respectively but it showed poor performance on other two dyes.


Assuntos
Bactérias/metabolismo , Corantes/metabolismo , Resíduos Industriais , Têxteis , Biodegradação Ambiental , Cor
5.
Phytochemistry ; 56(7): 703-10, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11314956

RESUMO

Thirteen major volatiles of the carnation flower fragrance signature have been identified by GC/MS. Of these, ten, hexanal, (2E)-hexenal, 1-hexanol, 2-hexanol, 3-hexen-1-ol, nonanal, benzaldehyde, benzyl alcohol, benzyl benzoate and caryophyllene, were quantified. The steady-state levels of these ten volatiles change independently as the flowers develop and senesce, suggesting that their synthesis is developmentally regulated. In addition, the chemical composition of the fragrance signature in naturally senesced flowers proved to be very different from that for flowers that had been induced to senesce prematurely by treatment with ethylene. Thus, senescence-related changes in carnation floral scent appear not to be directly regulated by ethylene. From cellular fractionation studies, it is evident that all of the volatiles, except 2-hexanol, are present in both membranous and cytosolic compartments, suggesting that their synthesis is membrane-associated and that they subsequently partition into the cytosol in accordance with partition coefficients.


Assuntos
Magnoliopsida/crescimento & desenvolvimento , Odorantes/análise , Álcoois/análise , Aldeídos/análise , Cromatografia Gasosa-Espectrometria de Massas , Magnoliopsida/química
6.
Biotechnol Bioeng ; 67(3): 372-7, 2000 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-10620268

RESUMO

In recent years there has been an increase in the interest in the production of compounds by isolation from natural sources or through processes that can be deemed "natural". This is of particular interest in the food and beverage industry for flavors and aromas. Hexanal, organoleptically known to possess "green character", is of considerable commercial interest. The objective of this study was to determine if the enzyme template known to be responsible for the synthesis of hexanal from linoleic acid (18:2) in tomato fruits could be harnessed using a hollow-fiber reactor. A hollow-fiber reactor system was set up and consisted of a XAMPLER ultrafiltration module coupled to a reservoir. The enzyme template was extracted from ripe tomato fruits and processed through an ultrafiltration unit (NMWC of 100 kDa) to produce a retentate enriched in soluble and membrane-associated lipoxygenase (LOX) and hydroperoxide lyase (HPL). This extract was recirculated through the lumen of the hollow-fiber ultrafiltration unit with the addition of substrate in the form of linoleic acid, with buffer addition to the reaction flask to maintain a constant retentate volume. Product formation was measured in the permeate using solid phase microextraction (SPME) developed for this system. At exogenous substrate concentrations of 16 mM and a transmembrane pressure of 70 kPa, hexanal production rates are in the order of 5.1 microg/min. Addition of Triton X-100 resulted in membrane fouling and reduced flux. The reactor system has been run for periods of up to 1 week and has been shown to be stable over this period.


Assuntos
Reatores Biológicos , Sistema Enzimático do Citocromo P-450 , Aromatizantes/metabolismo , Indústria Alimentícia/métodos , Solanum lycopersicum/química , Aldeído Liases , Aldeídos/metabolismo , Antioxidantes , Centrifugação , Aromatizantes/química , Lipoxigenase , Microssomos , Pressão , Galato de Propila , Tensoativos , Ultrafiltração , Volatilização
7.
Crit Rev Microbiol ; 25(4): 245-73, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10642887

RESUMO

Although a wide range of microorganisms have been discovered that are able to degrade highly stable, toxic xenobiotics, still many pollutants persist in the environment. Recent advances in the field of r-DNA technology has provided solutions to these problems. One important factor limiting the bioremediation of sites contaminated with certain hazardous wastes is the slow rate of degradation. This slow rate limits the practicality of using bacteria in remediating contaminated sites. It is possible to extend the range of substrates that an organism can utilize. It is even possible to endow an organism with the ability to degrade a predetermined range of xenobiotics. Because biotechnological processes are based on natural activities of microorganisms and constitute variations in classic domestic waste treatment processes, they are publicly more accepted. This is an area where genetic engineering can make a marked improvement by manipulating catabolic genes of microorganisms. Advances in r-DNA technology have opened up new avenues to move toward the goal of genetically engineered microorganisms to function as "designer biocatalysts" in which certain desirable biodegradation pathways or enzymes from different organisms are brought together in a single host with the aim of performing specific detoxification. In the last 2 decades much progress has been made in this direction, and as a result catabolic genes have been cloned and characterized for organochlorines, polychlorinated biphenyls, chlorobenzoates, naphthalene etc. The aim of this review is to provide an insight in the recent advances made on characterization and expression of catabolic genes that encode the degradation/detoxification of these persistent and toxic xenobiotic compounds.


Assuntos
Bactérias/genética , Genes Bacterianos/genética , Plasmídeos/genética , Antracenos/metabolismo , Bactérias/enzimologia , Biodegradação Ambiental , Clorobenzoatos/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Hexaclorocicloexano/metabolismo , Naftalenos/metabolismo , Fases de Leitura Aberta , Paration/metabolismo , Fenantrenos/metabolismo , Fenoxiacetatos/metabolismo , Bifenilos Policlorados/metabolismo , Tolueno/metabolismo , Xilenos/metabolismo
8.
Appl Microbiol Biotechnol ; 42(6): 958-63, 1995 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-7766094

RESUMO

The ability of the white-rot fungus Phanerochaete chrysosporium (INA-12) to degrade various polynuclear aromatic hydrocarbons (PAH) was investigated. Under static, non-nitrogen-limiting conditions, P. chrysosporium mineralized both phenanthrene and benzo[a]pyrene. Total mineralization, based on radioactive tracing, was limited to 1.8%-3% for phenanthrene and benzo[a]pyrene respectively. In both cases the pattern of mineralization did not correlate temporally with the production of lignin peroxidase activity. Sorption of radiolabelled material to the biomass was very significant with 22% and 40% of the total radioactivity being sorbed for benzo[a]pyrene and phenanthrene respectively. A number of models were examined to predict the sorption isotherms, the best performance being obtained with a three-parameter empirical model. It is apparent that lignin peroxidase is not necessarily involved in the biodegradation of all PAH and that a significant factor in PAH biodegradation and/or disappearance in cultures with the intact fungus may be attributed to sorption phenomena.


Assuntos
Basidiomycota/metabolismo , Compostos Policíclicos/metabolismo , Absorção , Benzo(a)pireno/metabolismo , Biodegradação Ambiental , Biomassa , Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacocinética , Modelos Biológicos , Peroxidases/metabolismo , Fenantrenos/metabolismo , Compostos Policíclicos/farmacocinética
9.
Biotechnol Bioeng ; 42(4): 538-41, 1993 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18613060

RESUMO

The Waterloo Fast Pyrolysis Process (WFPP) can produce an organic liquid high in levoglucosan (1, 6-anhydro-beta-D-glucopyranose) content from suitably pretreated lignocellulosics. A variety of fungi and yeasts were screened for their ability to utilize and ferment this organic liquid. To enhance its fermentability, the pyrolysis tar was posttreated in three different ways: (1) an aqueous extract (lignin removed); (2) activated charcoal treated (lignin and aromatics removed); and (3) acid hydrolysate (lignin and aromatics removed with the levoglucosan hydrolyzed to glucose). Four fungal strains were examined. None grew in the aqueous extract, but all grew equally well in both the activated charcoal treated and the acid hydrolysate, suggesting that the aromatic species were inhibitory to growth. Seven yeast species were examined, two of which did not grow on any of the extracts. Five of the yeast strains grew well on both the aqueous extract as well as the activated charcoal extract. The hydrolysate was optimal in terms of biomass yield and ethanol production. Ethanol yields on the hydrolysate were comparable or better than those on glucose. Ethanol was also produced in the aqueous extract and activated charcoal-treated substrate, but yields were considerably lower than on the hydrolysate or glucose. It is apparent that a wood pyrolysate maximized for levoglucosan can serve as a fermentable substrate, although postpyrolysis clean-up appears necessary.

10.
Appl Environ Microbiol ; 59(6): 1887-92, 1993 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8328805

RESUMO

The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerged static culture. This strain, unlike other strains, does not require nutrient limitation for induction of lignin peroxidase. Maximum levels of lignin peroxidase activity were reached 7 days after culture initiation, when almost 80% of the initial glycerol and 70% of the initial nitrogen were still present. Lignin peroxidase levels then decreased, while biomass levels increased until about day 14. The ratio of cell dry weight to wet weight was constant until the maximum biomass concentration was achieved, after which there was a decrease in the water content. The change in this ratio reflects cell lysis as it correlated with increased concentrations of nitrogen in the media, arising from cell leakage. The suitability of four growth models to predict growth, and in some cases glycerol consumption, was evaluated. A simple linear model and the Emerson model performed poorly for the early stages of growth, while a modified Williams model and the Monod model predicted substrate and biomass concentrations equally well. All models will predict biomass concentrations during the active growth phase, but they should not be used to predict biomass concentrations after the stationary growth phase, when cell lysis becomes significant.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Ecologia , Modelos Biológicos , Peroxidases/metabolismo , Basidiomycota/enzimologia , Meios de Cultura/química
11.
Appl Environ Microbiol ; 58(9): 3117-21, 1992 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-1444426

RESUMO

In recent years, the white rot fungus Phanerochaete chrysosporium has shown promise as an organism suitable for the breakdown of a broad spectrum of environmental pollutants, including polynuclear aromatic hydrocarbons (PAHs). The focus of this study was to determine whether P. chrysosporium could effectively operate in an actual field sample of oil tar-contaminated soil. The soil was loaded with [14C]phenanthrene to serve as a model compound representative of the PAHs. Soil with the native flora present under static, aerobic conditions with buffering (pH 5.0 to 5.5) displayed full mineralization on the order of 20% in 21 days. The addition of P. chrysosporium was synergistic, with full mineralization on the order of 38% in 21 days. In addition to full mineralization, there was an increase in the proportion of radiolabelled polar extractives, both soluble and bound, in the presence of P. chrysosporium. From this study, it is apparent that the native soil microflora can be prompted into full mineralization of PAHs in some contaminated soils and that this mineralization can be enhanced when supplemented with the white rot fungus P. chrysosporium. With further refinement, this system may prove an effective bioremediation technology for soils contaminated with PAHs.


Assuntos
Basidiomycota/metabolismo , Óleos/metabolismo , Fenantrenos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Adsorção , Biodegradação Ambiental , Dióxido de Carbono/metabolismo , Meios de Cultura , Concentração de Íons de Hidrogênio
12.
Biotechnol Bioeng ; 40(3): 388-95, 1992 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18601129

RESUMO

Aspects of reaction engineering associated with multienzyme reactions have been studied in a system where dopamine is produced from catechol, pyruvate and ammonium by sequential enzymatic reactions catalyzed by tyrosine phenol lyase (TPL) and tyrosine decarboxylase (TDC). Microbial cells containing TPL activity (Erwinia herbicola) and TDC activity (Streptococcus faecalis) were coimmobilized in glutaraldehyde cross-linked porcine gelatin beads with a mean diameter of 2.8 mm for use in the reactions. Measurement of the transport properties in the beads indicate that the gelatin matrix does not significantly increase the diffusion resistance and that dopamine partitions into the matrix (K = 2). A packed-bed reactor containing the coimmobilized cell beads successfully produced dopamine, although with a low conversion. Using computer simultaneous it is shown that separate, sequential TPL and TDC, rather than simultaneous, reactions, would require smaller reactors overall for the same conversion.

13.
Biotechnol Bioeng ; 39(7): 781-9, 1992 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18601010

RESUMO

The enzymology and kinetics of tyrosine phenol lyase (TPL) from Erwinia herbicola, and tyrosine decarboxylase (TDC) from Streptococcus faecalis have been investigated for potential use in a coimmobilized multienzyme biocatalytic system for the production of dopamine. In this multienzyme biotransformation using whole cells optimized for each of the respective enzymes, TPL catalyzes the production of 3,4-dihydroxyphenyl-L-alanine (L-dopa) from catechol, pyruvate, and ammonium, and this is subsequently decarboxylated by TDC to produce dopamine. Performing the reactions simultaneously, thereby removing L-dopa, is one option for overcoming the TPL equilibrium constraints. The enzymes have different optimal pH values, so the reaction kinetics at a compromise pH of 7.1, where both enzymes could be operated simultaneously, were investigated. For the concentration range investigated, TPL followed pseudo-first-order kinetics with respect to catechol, pyruvate, and ammonium. TDC exhibited significant product inhibition as well as inhibition by combinations of catechol and pyruvate.

14.
Biotechnol Bioeng ; 38(9): 1029-33, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18600867

RESUMO

Norlaundanosoline is a key intermediate in the synthesis of the benzylisoquinoline alkaloids providing the upper isoquinoline portion of the morphinan skeleton. This study evaluates the feasibility of using Aspergillus niger as an in situ biotransformation system to produce norlaudanosoline from dopamine. A. niger was chosen because monoamine oxidase can be readily induced in this organism. Monoamine oxidase catalyzes the conversion of dopamine to 3,4-dihydroxyphenylacetaldehyde. In the presence of dopamine, this aldehyde will then undergo a spontaneous Picket-Spengler condensation to form norlaudanosoline. Fermentation condition to form norlaudanosoline. Fermentation conditions were optimized for the production monoamine oxidase by using a two-stage process consisting of a growth stage and an induction stage. pH control was found to be important, and at pH 4.5 dopamine accumulation in the cells was high as was the level of monoamine oxidase. With pH control at 4.5, up to 21% of the cellular dopamine was converted to norlaudanosoline. It is proposed that with further protein engineering improvements, this system may prove suitable for the in situ bio-transformation of dopamine to norlaudanosoline.

15.
Biotechnol Adv ; 8(2): 303-19, 1990.
Artigo em Inglês | MEDLINE | ID: mdl-14546639

RESUMO

Microbial polysaccharides are extensively used commercially as gelling or suspending agents, as protective colloids or as thickening agents. Until recently, microbial cellulose producing systems such as Acetobacter xylinum, had been used largely as model systems for the study of cellulose biosynthesis. Current advances in molecular biology and biochemical engineering promise to usher microbial cellulose into the specialty chemical market. This review will highlight some of the recent progress made in our understanding of microbial cellulose biochemistry and biosynthesis, describe some of its inherent virtues and identify current unique applications of this versatile biopolymer.

16.
J Chem Technol Biotechnol ; 47(2): 93-100, 1990.
Artigo em Inglês | MEDLINE | ID: mdl-1369249

RESUMO

Adsorption of cells on particulate carriers is potentially one of the most cost-effective immobilization techniques available. Diatomite carriers, such as Celite, have desirable physical properties, are inexpensive, and are suitable for both mycelial and bacterial systems. This work investigated the use of diatomite carriers as a biocatalyst support in a packed-bed reactor where L-tyrosine was enzymatically decarboxylated using adsorbed, non-growing cells of Streptococcus faecalis. Composition of microbial adsorption on different Celite types, with mean pore sizes ranging from 0.55 to 22 microns, showed there was no significant difference in biomass loading capacity under the conditions used. Using Celite 560, biomass loadings in a packed-bed reactor varied from 10 to 30 g dm-3 of reactor volume, which compares favourably with other adsorption methods. When used to decarboxylate L-tyrosine, the reactor was found to have a half-life of 15-20 h. A combination of enzyme activity loss and slow leakage of biomass from the packed-bed reactor was responsible for the decline in conversion. Treatment of the S. faecalis cells with glutaraldehyde significantly reduced the enzyme activity loss and extended the reactor half-life to 65 h, but had little effect on the rate of cell leakage from the reactor. Further work on reduction of cell leakage rate seems necessary for evaluation of the system's practicality.


Assuntos
Técnicas Bacteriológicas , Terra de Diatomáceas , Enterococcus faecalis/citologia , Dióxido de Silício , Adsorção , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas/instrumentação , Biotransformação , Enterococcus faecalis/enzimologia , Glutaral/farmacologia , Tirosina/metabolismo , Tirosina Descarboxilase/metabolismo
17.
New Phytol ; 105(3): 317-344, 1987 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33873900

RESUMO

Reactions involving free radicals are an inherent feature of plant senescence and appear to contribute to a process of oxidative deterioration that leads ultimately to cell death. Radical species derived from molecular oxygen are the primary mediators of this oxidative damage, but non-radical excited states of oxygen, specifically singlet oxygen, may also be involved. Several lines of evidence suggest that degradation of lipids in senescing membranes and the ensuing release of free fatty acids initiate oxidative deterioration by providing substrate for lipoxygenase. In some tissues, lipoxygenase activity increases with advancing senescence in a pattern that is consistent with its putative role in promoting oxidative damage. However, there are important exceptions to this which may be explained by the fact that the timing and extent of peroxidative reactions initiated by lipoxygenase are likely to be determined more by the availability of substrate for the enzyme than by changes in its activity. There are both membranous and cytosolic forms of lipoxygenase in senescing tissues, and peroxidation of membrane lipids appears to be initiated by the membranous enzyme once the appropriate fatty acid substrates, linoleic acid and linolenic acid, become available. Since lipid peroxidation is known to form alkoxy and peroxy radicals as well as singlet oxygen, these reactions in membrane bilayers are probably a major source of activated oxygen species in senescing tissues. Further-more, there are indications that activated oxygen from the lipoxygenase reaction can become substrate for the cytosolic form of the enzyme which, in turn, may raise the titre of activated oxygen during senescence. Additional possible sources of increased free radical production in senescing tissues include peroxidase, which shows greatly increased activity with advancing age, leakage of electrons from electron transport systems to oxygen, in particular from the photosynthetic electron transport system, and decompartmentalization of iron, which would facilitate formation of the highly reactive hydroxyl radical from the less reactive superoxide anion. A variety of macromolecules can be damaged by activated oxygen. Unsaturated fatty acids are especially prone to attack, and this implies that membranes are primary targets of free radical damage. The manifestations of this damage in senescing tissues range from altered membrane fluidity and phase properties to leakiness that can be attributed to a destabilized and highly perturbed membrane bilayer. There is also a progressive breakdown of cellular protein with advancing senescence. Free radicals can inactivate proteins by reacting with specific amino acid residues, and a number of in zitro studies have indicated that such alteration renders the proteins more prone to hydrolysis by proteases. Thus, although there is no direct evidence linking enhanced proteolysis during senescence to free radical damage, there is reason to believe that this may be a contributing factor. Wounding of certain plant tissues also initiates a series of reactions that revolve around the breakdown of membrane lipids and their peroxidation. Indeed, as in the case of senescence, membrane deterioration follokving wounding appears to be facilitated by a self-perpetuating wave of free radical production emanating from peroxidation within the lipid bilayer. There is also recent evidence for activation of an O2 - -producing NADPH oxidase in plant tissues following fungal infection that may be analogous to the well-characterized O2 - -generating NADPH oxidase associated with the plasma membrane of polymorphonuclear leukocytes. This raises the interesting possibility that plants and animals share a common defence response to invading organisms. Contents Summary 317 I. Introduction 318 II. Species of activated oxygen 319 III. Sites of activated oxygen production 319 IV. Free radical production during senescence 323 V. Targets of free radical damage in senescing tissues 330 VI. The role of free radicals in seed ageing 336 VII. The role of free radicals in wounding 337 VIII. Concluding remarks 338 Acknowledgement 338 References 338.

18.
Plant Physiol ; 81(4): 954-9, 1986 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16664964

RESUMO

Changes in the molecular organization of membranes in pericarp cells of ripening tomato fruit were examined by fluorescence depolarization after labeling with fluorescent lipid-soluble probes. The fluorescent labels were partitioned into isolated protoplasts and purified plastids from fruit at various stages of senescence. Values for steady-state anisotropy (r(ss)) of 1,6-diphenyl-1,3,5-hexatriene (DPH)-labeled protoplasts rose progressively during the early stages of ripening over a time frame that overlapped the climacteric rise in ethylene production. This can be interpreted as reflecting a decrease in the lipid fluidity of primarily plasma membrane. By contrast, there was no significant change during ripening in r(ss) for plastid membranes labeled with DPH, 1-[4-trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH), and cis- or trans-parinaric acid. Nor was there any change during ripening in the limiting fluorescence anisotropy (r(oo)) and order parameter (S) for plastids labeled with DPH or TMA-DPH, parameters that are corrected for any differences in lifetime. Some degree of lifetime heterogeneity, possibly reflecting structurally distinct domains, was discerned in both young and senescent plastids that had been labeled with DPH or TMA-DPH, but this also did not change as ripening progressed. Thus membranes of the pericarp cells sustain different fates as the tomato fruit ripens, implying that there are distinguishable mechanisms of membrane deterioration in senescing tissues.

19.
Plant Physiol ; 73(3): 784-90, 1983 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16663301

RESUMO

Bicarbonate markedly enhances ethylene production from 1-aminocyclopropane-1-carboxylic acid (ACC) in model chemical systems where the conversion is free radical-mediated, in thylakoid membrane suspensions of Phaseolus vulgaris L. cv Kinghorn where the reaction is light-dependent, and in microsomal membrane suspensions and intact tissues where the reaction is enzymically mediated. In two model systems generating free radicals-the Fenton reaction and a reaction mixture containing xanthine/xanthine oxidase, NaHCO(3) (200 millimolar) increased the formation of ethylene from ACC by 84-fold and 54-fold, respectively. Isolated thylakoid membranes also proved capable of ACC-dependent ethylene production, but only upon illumination, and this too was enhanced by added NaHCO(3). As well, light-induced inhibition of ACC-dependent ethylene production by leaf discs was relieved by adding 200 millimolar NaHCO(3). Finally, NaHCO(3) (200 millimolar) augmented ACC-dependent ethylene production from young carnation flowers by about 4-fold, and the conversions of ACC to ethylene by microsomes isolated from carnation flowers and etiolated pea epicotyls were higher by 1900 and 62%, respectively, in the presence of 200 millimolar NaHCO(3).This increased production of ethylene appears not to be due to bicarbonate or CO(2)-induced release of the gas from putative receptor sites, since the addition of NaHCO(3) to sealed reaction mixtures after the ACC to ethylene conversion had been terminated had no effect. Spin-trapping studies have confirmed that bicarbonate does not facilitate the formation of free radicals thought to be involved in the conversion of ACC to ethylene. Nor did bicarbonate alter the physical properties of the membrane bilayer, which might indirectly modulate the activity of the membrane-associated enzyme capable of converting ACC to ethylene. Rather, bicarbonate appears to directly facilitate the conversion of ACC to ethylene, and the data are consistent with the view that CO(2) derived from bicarbonate is the active molecular species.

20.
Plant Physiol ; 67(5): 892-7, 1981 May.
Artigo em Inglês | MEDLINE | ID: mdl-16661788

RESUMO

The recovery from "lodging," or bending over, by shoots of 42-day-old Avena sativa plants is controlled primarily by a negatively geotropic differential growth of the lower halves of the p-1 node-pulvinus and the base of the p-1 internode, relative to the upper halves. Although geostimulation causes a significant reduction in p-1 internode length, dry matter accumulation in the p-1 node-pulvinus is increased, apparently at the expense of the sheath. Recovery to an angle of 30 degrees is associated with changes in endogenous gibberellin-like substances (GAs), and in differential metabolism of applied [(3)H]GA(4) (1.4 Curie per millimole). Although geostimulation depressed total GAs (relative to upright plant parts) to 0.40 and 0.13 for node-pulvini and sheaths, respectively, it increased them 2-fold for internodes. Within the plant part geostimulation increased GAs (relative to upper halves) 29- and 7-fold in lower halves of node-pulvini and internodes, respectively, but reduced GAs to 0.3 in lower halves of sheaths. At age 42 days a GA(4/7)-like (nonpolar) substance predominates, with lesser amounts of a GA(3)-like (polar) substance. Native GAs of Avena include GA(3), GA(4), and GA(7). Geostimulation enhanced the ratio of nonpolar to polar GAs for both halves of internodes, but tended to depress it for sheaths and nodepulvini.The disposition and metabolism of applied [(3)H]GA(4) confirmed the above trends for endogenous GAs regarding localization (e.g. up to 2-fold increases in [(3)H]GA(4) and acidic (3)H-metabolites in the lower halves, relative to upper halves). Also, metabolism into highly water-soluble (3)H-metabolites (biologically inactive conjugates?) was greater (up to 1.8-fold) in upper than in lower halves. The end result of such metabolic trends would be to reduce acidic (biologically active?) GAs in the upper half, while retaining them for a longer time in the lower half.Geotropically stimulated Avena shoots thus increase, within 24 hours, the levels of acidic GAs in the lower halves of the p-1 node-pulvinus and p-1 internode, the two plant parts responsible for the geostimulated growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...