Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 83(2): 02A338, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380185

RESUMO

A new design of a multicharged ion source based on the MONO1000 ECRIS has been presented at the last ECR ion source (ECRIS) Workshop 2010. [L. Maunoury et al., in Proceedings of the XIXth International Workshop on ECR Ion Sources, Grenoble, France, 23-26 August 2010] This source has not only two opening at both ends but also a large space in the middle of the source enabling a direct contact with the ECR plasma. The source has been assembled mechanically and put on a test bench at the Pantechnik company. The primary tests have shown that the plasma ignition occurred at low pressure (10(-6) mbar) and low RF power (10 W). The first experimental results ( = 1.30 for Ar and 1.85 for Xe) demonstrated the potential of this ion source in production of multicharged ion beams.

2.
Rev Sci Instrum ; 83(2): 02A339, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380186

RESUMO

A review of today achieved A∕Q = 3 heavy ions beams is proposed. The daily operation A∕Q = 3 ion beam intensities expected at Spiral2 are at the limit or above best record 3rd generation electron cyclotron resonance ion source (ECRIS) intensities. The necessity to build a new fully superconducting to fulfill these requirements is outlined. A discussion on the volume of the future source is proposed and the minimum value of 12 liters is derived. An analysis of the x-ray absorption superconducting ECRIS is presented based on VENUS experimental data and geometry. This study underlines the necessity to include a complete x-ray study at the time of source conception. The specifications foreseen for the new ECRIS are presented, followed with the roadmap for the design.

3.
Rev Sci Instrum ; 83(2): 02A911, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380252

RESUMO

The upgrade of the "Système de Production d'Ions Radioactifs en Ligne" phase I (SPIRAL I) installed at the "Grand Accélérateur National d'Ions Lourds" (GANIL) situated at Caen, France, is in progress and should be ready by 2014. In parallel, the first part of SPIRAL II facility is currently under construction. The global status of the upgrade is presented: goal, radioactive ion production systems, modification of the production cave and impact of the current safety re-evaluation of GANIL.

4.
Rev Sci Instrum ; 83(2): 02A915, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380256

RESUMO

The SPIRAL 2 facility is now under construction and will deliver either stable or radioactive ion beams. First tests of nickel beam production have been performed at GANIL with a new version of the large capacity oven, and a calcium beam has been produced on the heavy ion low energy beam transport line of SPIRAL 2, installed at LPSC Grenoble. For the production of radioactive beams, several target∕ion-source systems (TISSs) are under development at GANIL as the 2.45 GHz electron cyclotron resonance ion source, the surface ionization source, and the oven prototype for heating the uranium carbide target up to 2000 °C. The existing test bench has been upgraded for these developments and a new one, dedicated for the validation of the TISS before mounting in the production module, is under design. Results and current status of these activities are presented.

5.
Rev Sci Instrum ; 81(2): 02A908, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20225406

RESUMO

Development of new radioactive beams, and thus of new target ion sources (TISs) for isotope-separator-on-line production systems are in progress at GANIL for the SPIRAL 2 project. The efficiency and time response measurements of each step in the production process are crucial to predict and maximize the available yields, in particular, for short lived isotopes. This paper presents a method for measuring these quantities that makes use of a stable alkali chopped beam of controlled intensity. This method was applied to surface ionization source test for high efficiency. Results of recent experiments are presented that include ionization efficiency measurements for Cs, Rb, K, Na, and Li with a graphite and rhenium ionizer and dwell time of these alkalis on graphite. The results enabled to design a first surface ionization source prototype which will be installed in the SPIRAL 2 TIS.

6.
Rev Sci Instrum ; 81(2): 02A904, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192402

RESUMO

The production of radioactive ions using the Isotope Separation On-Line method gives rise, in most cases, to singly charged ions. In order to perform experiments with postaccelerated radioactive ion beams, these ions have to be multicharged. We describe here a new compact design for a charge breeder that will be coupled to the production target of SPIRAL1 at GANIL. We present recent results obtained offline with stable alkali ions (Na, K, Rb, and Cs) on the SIRa test bench. Particularly, 1(+) to N(+) conversion efficiencies and conversion times are presented. Several points have been identified for the improvements of the present performances.

7.
Rev Sci Instrum ; 81(2): 02A909, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192406

RESUMO

In the frame of the SPIRAL II (Système de Production d'Ions Radioactifs Accélérés en Ligne Partie II) project, several developments of stable and radioactive ion production systems have been started up. In parallel, GANIL has the ambition to preserve the existing stable and radioactive beams and also to increase its range by offering new ones. In order to identify the best directions for this development, a new group called GANISOL has been formed. Its preliminary conclusions and the latest developments at GANIL are presented.

8.
Rev Sci Instrum ; 79(2 Pt 2): 02A309, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18315099

RESUMO

GANIL has been producing many stable and radioactive ion beams for nearly 25 years. Constant progresses have been made in terms of intensity, stability, and reliability. The intensity for some stable metallic beams now exceeds or approaches the p microA level at an energy up to 95 MeV/u, e.g., 1.14 p microA for (36)S (65% enriched) at 77 MeV/u, 0.35 p microA for (58)Ni (63% enriched) at 74 MeV/u. Some recent results with Magnesocene using the metallic ions from volatile compounds method should also make possible the production of metallic beams with an intensity greater than 1 p microA. This has still to be measured. The ISOL facility SPIRAL I has been in operation for almost six years. Up to now, 17 exotic He experiments have been done with 14 target/ion-source (TIS) units; 19 other experiments (with O, Ne, Ar, and Kr) have been achieved with 14 TISs. Statistics show a fairly good ratio of available beam time to scheduled beam time. The radioactive beams and available intensities are compiled in this report. Future developments on radioactive ion beam production are briefly presented, while more details will be discussed elsewhere at this conference.

9.
Rev Sci Instrum ; 79(2 Pt 2): 02A313, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18315103

RESUMO

An increasing number of experiments in the field of low energy ion physics (<25 keV/charge) requires pulsed beams of highly charged ions. Whereas for high-intensity beams (greater than microampere) a pulsed beam chopper, installed downstream to the analyzing dipole, is used. For low-intensity beams (<100 nA) the ion intensity delivered during the pulse may be increased by operating the electron cyclotron resonance discharge in the afterglow mode. This method gives satisfactory results (i.e., average current during the beam pulse is higher than the current in the cw mode) for high charge state ions. In this paper, we report on results of the afterglow mode for beams of (22)Ne(q+), (36)Ar(q+), and (84)Kr(q+) ions. Furthermore, a new promising "micropulsed beam" mode will be described with encouraging preliminary results for (84)Kr(27+) and (36)Ar(17+) ions.

10.
Rev Sci Instrum ; 79(2 Pt 2): 02A904, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18315159

RESUMO

In the framework of the production of radioactive ion beams by the isotope separator online method, a new system has been developed at GANIL/SPIRAL I to produce multicharged alkali ions. The principle, referred to as the "direct 1+/N+ method," consists of a surface ionization source associated with a multicharged electron-cyclotron-resonance ion source without an intermediate mass separator. This new system has been tested online using a (48)Ca primary beam at 60.3 A MeV. The experimental evidence of the direct 1+/N+ process has been obtained for a potential difference between the two sources of 11 V and with a 1+/N+ charge breeding efficiency of 0.04% for (47)K(5+). This value is significantly lower than the value of 6% obtained for stable K ions with the standard 1+/N+ method. A possible explanation is given in the text.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...