Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Case Rep Rheumatol ; 2022: 9694911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747428

RESUMO

We report the case of a 29-year-old adult presenting with severe IgA vasculitis, with cutaneous, urologic, and renal manifestations. The late appearance of severe gastrointestinal bleeding dominated the clinical picture, necessitating the administration of tens of units of packed cells and the augmentation of the immunosuppressive protocol. It was not until therapy with intravenous immunoglobulin (IVIG) was introduced that the massive bleeding was controlled. We herein discuss the patient's presentation, the gastrointestinal manifestations of IgA vasculitis, the recommended treatments, and the existent evidence about IVIG therapy.

3.
Mult Scler ; 27(14): 2232-2239, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33783260

RESUMO

BACKGROUND: There are fewer multiple sclerosis (MS) relapses during pregnancy, although relapse risk increases in the early post-partum period, as has been predicted by pre-pregnancy or pregnancy disease activity in some studies. OBJECTIVE: The aim of this study was to evaluate the correlation between magnetic resonance imaging (MRI) changes in the year before pregnancy and the relapse rate in the year post-partum. METHODS: An observational retrospective case-control study included 172 pregnancies in 118 females with MS. Statistical analyses were used to evaluate the correlation between MRI and post-partum relapses. Clustered logistic regression was used to investigate the predictors of early post-partum relapses. RESULTS: We found a significant correlation for an active-MRI pre-pregnancy and relapses in the first 3 months post-partum (p < 0.001). Expanded Disability Status Scale (EDSS) pre-pregnancy and relapses in the first 3 months post-partum were also significantly correlated (p = 0.009). Using a multivariate model, we predicted which women will not experience post-partum relapse by EDSS and by an active-MRI pre-pregnancy (96.7% specificity; p < 0.001). CONCLUSION: An active-MRI pre-pregnancy is a strong and sensitive predictor of early post-partum relapse, regardless of whether the woman had clinical evidence of disease activity prior to conception and delivery. This finding could provide clinicians with a strategy to minimize post-partum relapse risk in women with MS planning pregnancy.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Período Pós-Parto , Gravidez , Recidiva , Estudos Retrospectivos
5.
Neuron ; 85(1): 49-59, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25569347

RESUMO

Somatic mutations occur during brain development and are increasingly implicated as a cause of neurogenetic disease. However, the patterns in which somatic mutations distribute in the human brain are unknown. We used high-coverage whole-genome sequencing of single neurons from a normal individual to identify spontaneous somatic mutations as clonal marks to track cell lineages in human brain. Somatic mutation analyses in >30 locations throughout the nervous system identified multiple lineages and sublineages of cells marked by different LINE-1 (L1) retrotransposition events and subsequent mutation of poly-A microsatellites within L1. One clone contained thousands of cells limited to the left middle frontal gyrus, whereas a second distinct clone contained millions of cells distributed over the entire left hemisphere. These patterns mirror known somatic mutation disorders of brain development and suggest that focally distributed mutations are also prevalent in normal brains. Single-cell analysis of somatic mutation enables tracing of cell lineage clones in human brain.


Assuntos
Linhagem da Célula/genética , Córtex Cerebral/citologia , Elementos Nucleotídeos Longos e Dispersos/genética , Neurônios/citologia , Retroelementos/genética , Adolescente , Encéfalo/citologia , Encéfalo/metabolismo , Movimento Celular , Córtex Cerebral/metabolismo , Células Clonais/citologia , Células Clonais/metabolismo , Análise Mutacional de DNA , Humanos , Masculino , Repetições de Microssatélites/genética , Mutação/genética , Neurônios/metabolismo , Poli A/genética , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
6.
Cell Rep ; 8(5): 1280-9, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25159146

RESUMO

De novo copy-number variants (CNVs) can cause neuropsychiatric disease, but the degree to which they occur somatically, and during development, is unknown. Single-cell whole-genome sequencing (WGS) in >200 single cells, including >160 neurons from three normal and two pathological human brains, sensitively identified germline trisomy of chromosome 18 but found most (≥ 95%) neurons in normal brain tissue to be euploid. Analysis of a patient with hemimegalencephaly (HMG) due to a somatic CNV of chromosome 1q found unexpected tetrasomy 1q in ∼ 20% of neurons, suggesting that CNVs in a minority of cells can cause widespread brain dysfunction. Single-cell analysis identified large (>1 Mb) clonal CNVs in lymphoblasts and in single neurons from normal human brain tissue, suggesting that some CNVs occur during neurogenesis. Many neurons contained one or more large candidate private CNVs, including one at chromosome 15q13.2-13.3, a site of duplication in neuropsychiatric conditions. Large private and clonal somatic CNVs occur in normal and diseased human brains.


Assuntos
Encéfalo/metabolismo , Variações do Número de Cópias de DNA , Genoma Humano , Tetrassomia , Trissomia , Encéfalo/citologia , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 18/genética , Hemimegalencefalia/genética , Humanos , Linfócitos/metabolismo , Neurônios/metabolismo , Análise de Sequência de DNA , Análise de Célula Única
7.
Cell ; 151(3): 483-96, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23101622

RESUMO

A major unanswered question in neuroscience is whether there exists genomic variability between individual neurons of the brain, contributing to functional diversity or to an unexplained burden of neurological disease. To address this question, we developed a method to amplify genomes of single neurons from human brains. Because recent reports suggest frequent LINE-1 (L1) retrotransposition in human brains, we performed genome-wide L1 insertion profiling of 300 single neurons from cerebral cortex and caudate nucleus of three normal individuals, recovering >80% of germline insertions from single neurons. While we find somatic L1 insertions, we estimate <0.6 unique somatic insertions per neuron, and most neurons lack detectable somatic insertions, suggesting that L1 is not a major generator of neuronal diversity in cortex and caudate. We then genotyped single cortical cells to characterize the mosaicism of a somatic AKT3 mutation identified in a child with hemimegalencephaly. Single-neuron sequencing allows systematic assessment of genomic diversity in the human brain.


Assuntos
Núcleo Caudado/citologia , Córtex Cerebral/citologia , Elementos Nucleotídeos Longos e Dispersos , Mutação , Neurônios/metabolismo , Análise de Célula Única , Núcleo Caudado/metabolismo , Córtex Cerebral/metabolismo , Criança , Cromossomos Humanos Par 18 , Estudo de Associação Genômica Ampla , Humanos , Masculino , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Mosaicismo , Proteínas Proto-Oncogênicas c-akt/genética , Trissomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...