Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Horm Metab Res ; 56(4): 286-293, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471570

RESUMO

Intraportal islet transplantation in patients with type 1 diabetes enables restoration of glucose-regulated insulin secretion. However, several factors hamper a widespread application and long-term success: chronic hypoxia, an inappropriate microenvironment and suppression of regenerative and proliferative potential by high local levels of immunosuppressive agents. Therefore, the identification of alternative and superior transplant sites is of major scientific and clinical interest. Here, we aim to evaluate the adrenal as an alternative transplantation site. The adrenal features a particular microenvironment with extensive vascularization, anti-apoptotic and pro-proliferative, anti-inflammatory and immunosuppressive effects. To validate this novel transplantation site, an in vitro co-culture system of adrenal cells and pancreatic islets was established and viability, islet survival, functional potency and antioxidative defense capacity were evaluated. For in vivo validation, an immune-deficient diabetic mouse model for intra-adrenal islet transplantation was applied. The functional capacity of intra-adrenally grafted islets to reverse diabetes was compared to a standard islet transplant model and measures of engraftment such as vascular integration were evaluated. The presence of adrenal cells positively impacted on cell metabolism and oxidative stress. Following transplantation, we could demonstrate enhanced islet function in comparison to standard models with improved engraftment and superior re-vascularization. This experimental approach allows for novel insights into the interaction of endocrine systems and may open up novel strategies for islet transplantation augmented through the bystander effect of other endocrine cells or the active factors secreted by adrenal cells modulating the microenvironment.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Glândulas Suprarrenais , Secreção de Insulina
2.
Horm Metab Res ; 56(4): 279-285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37956864

RESUMO

Ferroptosis was recently identified as a non-apoptotic, iron-dependent cell death mechanism that is involved in various pathologic conditions. There is first evidence for its significance also in the context of islet isolation and transplantation. Transplantation of pancreatic human islets is a viable treatment strategy for patients with complicated diabetes mellitus type 1 (T1D) that suffer from severe hypoglycemia. A major determinant for functional outcome is the initial islet mass transplanted. Efficient islet isolation procedures and measures to minimize islet loss are therefore of high relevance. To this end, better understanding and subsequent targeted inhibition of cell death during islet isolation and transplantation is an effective approach. In this study, we aimed to elucidate the mechanism of ferroptosis in pancreatic islets. Using a rodent model, isolated islets were characterized relating to the effects of experimental induction (RSL3) and inhibition (Fer1) of ferroptotic pathways. Besides viability, survival, and function, the study focused on characteristic ferroptosis-associated intracellular changes such as MDA level, iron concentration and the expression of ACSL4. The study demonstrates that pharmaceutical induction of ferroptosis by RSL3 causes enhancement of oxidative stress and leads to an increase of intracellular iron, zinc and MDA concentration, as well as the expression of ACSL4 protein. Consequently, a massive reduction of islet function, viability, and survival was found. Fer1 has the potential to inhibit and attenuate these cellular changes and thereby protect the islets from cell death.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Transplante das Ilhotas Pancreáticas/efeitos adversos , Transplante das Ilhotas Pancreáticas/métodos , Transplante das Ilhotas Pancreáticas/fisiologia , Diabetes Mellitus Tipo 1/metabolismo , Morte Celular , Ferro
3.
Xenotransplantation ; 30(5): e12819, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37548062

RESUMO

Primary adrenal insufficiency is a life-threatening disorder, which requires lifelong hormone replacement therapy. Transplantation of xenogeneic adrenal cells is a potential alternative approach for the treatment of adrenal insufficiency. For a successful outcome of this replacement therapy, transplanted cells should provide adequate hormone secretion and respond to adrenal physiological stimuli. Here, we describe the generation and characterization of primary porcine adrenal spheroids capable of replacing the function of adrenal glands in vivo. Cells within the spheroids morphologically resembled adult adrenocortical cells and synthesized and secreted adrenal steroid hormones in a regulated manner. Moreover, the embedding of the spheroids in alginate led to the formation of cellular elongations of steroidogenic cells migrating centripetally towards the inner part of the slab, similar to zona Fasciculata cells in the intact organ. Finally, transplantation of adrenal spheroids in adrenalectomized SCID mice reversed the adrenal insufficiency phenotype, which significantly improved animals' survival. Overall, such adrenal models could be employed for disease modeling and drug testing, and represent the first step toward potential clinical trials in the future.


Assuntos
Córtex Suprarrenal , Insuficiência Adrenal , Camundongos , Animais , Suínos , Córtex Suprarrenal/fisiologia , Córtex Suprarrenal/transplante , Transplante Heterólogo , Camundongos SCID , Transplante de Células
5.
Biomedicines ; 10(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35740440

RESUMO

The transplantation of pancreatic islets can prevent severe long-term complications in diabetes mellitus type 1 patients. With respect to a shortage of donor organs, the transplantation of xenogeneic islets is highly attractive. To avoid rejection, islets can be encapsulated in immuno-protective hydrogel-macrocapsules, whereby 3D bioprinted structures with macropores allow for a high surface-to-volume ratio and reduced diffusion distances. In the present study, we applied 3D bioprinting to encapsulate the potentially clinically applicable neonatal porcine islet-like cell clusters (NICC) in alginate-methylcellulose. The material was additionally supplemented with bovine serum albumin or the human blood plasma derivatives platelet lysate and fresh frozen plasma. NICC were analysed for viability, proliferation, the presence of hormones, and the release of insulin in reaction to glucose stimulation. Bioprinted NICC are homogeneously distributed, remain morphologically intact, and show a comparable viability and proliferation to control NICC. The number of insulin-positive cells is comparable between the groups and over time. The amount of insulin release increases over time and is released in response to glucose stimulation over 4 weeks. In summary, we show the successful bioprinting of NICC and could demonstrate functionality over the long-term in vitro. Supplementation resulted in a trend for higher viability, but no additional benefit on functionality was observed.

6.
Nat Aging ; 2(4): 317-331, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-37117744

RESUMO

The innate immune response mounts a defense against foreign invaders and declines with age. An inappropriate induction of this response can cause diseases. Previous studies showed that mitochondria can be repurposed to promote inflammatory signaling. Damaged mitochondria can also trigger inflammation and promote diseases. Mutations in pink1, a gene required for mitochondrial health, cause Parkinson's disease, and Drosophila melanogaster pink1 mutants accumulate damaged mitochondria. Here, we show that defective mitochondria in pink1 mutants activate Relish targets and demonstrate that inflammatory signaling causes age-dependent intestinal dysfunction in pink1-mutant flies. These effects result in the death of intestinal cells, metabolic reprogramming and neurotoxicity. We found that Relish signaling is activated downstream of a pathway stimulated by cytosolic DNA. Suppression of Relish in the intestinal midgut of pink1-mutant flies restores mitochondrial function and is neuroprotective. We thus conclude that gut-brain communication modulates neurotoxicity in a fly model of Parkinson's disease through a mechanism involving mitochondrial dysfunction.


Assuntos
Proteínas de Drosophila , Gastroenteropatias , Enteropatias , Doença de Parkinson , Animais , Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinases/genética , Doença de Parkinson/genética
7.
Cell Death Dis ; 10(4): 288, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911005

RESUMO

Mutations in the mitochondrial GTPase mitofusin 2 (MFN2) cause Charcot-Marie-Tooth disease type 2 (CMT2A), a form of peripheral neuropathy that compromises axonal function. Mitofusins promote mitochondrial fusion and regulate mitochondrial dynamics. They are also reported to be involved in forming contacts between mitochondria and the endoplasmic reticulum. The fruit fly, Drosophila melanogaster, is a powerful tool to model human neurodegenerative diseases, including CMT2A. Here, we have downregulated the expression of the Drosophila mitofusin (dMfn RNAi) in adult flies and showed that this activates mitochondrial retrograde signalling and is associated with an upregulation of genes involved in folic acid (FA) metabolism. Additionally, we demonstrated that pharmacological and genetic interventions designed to increase the FA metabolism pathway suppresses the phenotype of the dMfn RNAi flies. We conclude that strategies to increase FA metabolism may ameliorate diseases, such as peripheral neuropathies, that are associated with loss of mitochondrial function. A video abstract for this article is available at  https://youtu.be/fs1G-QRo6xI .


Assuntos
Regulação para Baixo/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Ácido Fólico/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Transporte Axonal/genética , Doença de Charcot-Marie-Tooth/metabolismo , Modelos Animais de Doenças , Ácido Fólico/genética , Locomoção/genética , Masculino , Mitocôndrias/metabolismo , Fenótipo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo
8.
Adv Healthc Mater ; 8(7): e1801631, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30835971

RESUMO

Transplantation of pancreatic islets is a promising strategy to alleviate the unstable blood-glucose control that some patients with diabetes type 1 exhibit and has seen many advances over the years. Protection of transplanted islets from the immune system can be accomplished by encapsulation within a hydrogel, the most investigated of which is alginate. In this study, islet encapsulation is combined with 3D extrusion bioprinting, an additive manufacturing method which enables the fabrication of 3D structures with a precise geometry to produce macroporous hydrogel constructs with embedded islets. Using a plottable hydrogel blend consisting of clinically approved ultrapure alginate and methylcellulose (Alg/MC) enables encapsulating pancreatic islets in macroporous 3D hydrogel constructs of defined geometry while retaining their viability, morphology, and functionality. Diffusion of glucose and insulin in the Alg/MC hydrogel is comparable to diffusion in plain alginate; the embedded islets continuously produce insulin and glucagon throughout the observation and still react to glucose stimulation albeit to a lesser degree than control islets.


Assuntos
Bioimpressão/métodos , Hidrogéis/química , Impressão Tridimensional , Alginatos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glucose/metabolismo , Hidrogéis/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Metilcelulose/química , Porosidade , Ratos , Ratos Wistar , Engenharia Tecidual , Alicerces Teciduais/química
9.
Cell Death Differ ; 26(9): 1861, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30546072

RESUMO

Following publication of the article, Dr. Roberta Tufi of the Mitochondrial Biology Unit at the University of Cambridge was concerned to note that her own contribution to the study during her postdoc in Leicester at the MRC Toxicology Unit had not been acknowledged. Specifically, the data in Fig. 1 (panels a, b, and d) were produced though her work.

10.
Atheroscler Suppl ; 30: 303-310, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29096855

RESUMO

BACKGROUND AND AIMS: Human adipose-tissue derived stem cells (ADSC) are interesting novel targets in tissue engineering and regenerative medicine with pronounced angiogenic capacities. Furthermore, omega-3 fatty acids have been described to mediate cardioprotective effects, but their role in angiogenesis and vascular regeneration is not well-understood. Here, we analyzed the impact of different omega-3 fatty acids on angiogenesis by ADSCs. METHODS: Stem cells were cultured as monolayers or in 3D models, in spheroids embedded in collagen matrix or in co-cultures with human umbilical vein endothelial cells (HUVECs) in the Matrigel™ assay. The angiogenic properties of ADSCs were assessed by their sprouting and paracrine activities, gene expression by RT-PCR, Western blot, and enzyme immunoassay. RESULTS: Stimulation of undifferentiated ADSCs with docosahexaenoic acid (DHA) strongly upregulated angiopoietin-1 mRNA levels up to 4.6 ± 0.3 fold. Furthermore, Il-6 and Il-8 mRNAs were increased 4.2 ± 0.5 fold and 7.1 ± 1.1 fold, respectively. On the other hand, addition of DHA significantly decreased the cumulative sprout length by 2.7 ± 0.8 fold and reduced the total number of sprouts by 2.3 ± 0.9 fold in the in vitro angiogenesis assay. Moreover, excretion of IL-8 into the medium rapidly increased up to 1.7 ± 0.3 fold in response to treatment of ADSCs with DHA. Finally, protein kinase C inhibitor RO-31-8220 abrogated DHA-mediated up-regulation of angiopoietin-1 without significantly affecting ADSCs cell viability. CONCLUSION: In conclusion, ADSCs might regulate the formation and function of microvascular networks.


Assuntos
Tecido Adiposo/citologia , Indutores da Angiogênese/farmacologia , Proteínas Angiogênicas/metabolismo , Citocinas/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Proteínas Angiogênicas/genética , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Proteína Quinase C/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(44): 11745-11750, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078330

RESUMO

Transplantation of pancreatic islets for treating type 1 diabetes is restricted to patients with critical metabolic lability resulting from the need for immunosuppression and the shortage of donor organs. To overcome these barriers, we developed a strategy to macroencapsulate islets from different sources that allow their survival and function without immunosuppression. Here we report successful and safe transplantation of porcine islets with a bioartificial pancreas device in diabetic primates without any immune suppression. This strategy should lead to pioneering clinical trials with xenotransplantation for treatment of diabetes and, thereby, represents a previously unidentified approach to efficient cell replacement for a broad spectrum of endocrine disorders and other organ dysfunctions.


Assuntos
Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Tipo 1/cirurgia , Diabetes Mellitus Tipo 1/terapia , Ilhotas Pancreáticas/cirurgia , Animais , Feminino , Terapia de Imunossupressão/métodos , Transplante das Ilhotas Pancreáticas/métodos , Primatas , Suínos , Transplante Heterólogo/métodos
12.
J Cachexia Sarcopenia Muscle ; 8(4): 660-672, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28508547

RESUMO

BACKGROUND: Skeletal muscle is central to locomotion and metabolic homeostasis. The laboratory worm Caenorhabditis elegans has been developed into a genomic model for assessing the genes and signals that regulate muscle development and protein degradation. Past work has identified a receptor tyrosine kinase signalling network that combinatorially controls autophagy, nerve signal to muscle to oppose proteasome-based degradation, and extracellular matrix-based signals that control calpain and caspase activation. The last two discoveries were enabled by following up results from a functional genomic screen of known regulators of muscle. Recently, a screen of the kinome requirement for muscle homeostasis identified roughly 40% of kinases as required for C. elegans muscle health; 80 have identified human orthologues and 53 are known to be expressed in skeletal muscle. To complement this kinome screen, here, we screen most of the phosphatases in C. elegans. METHODS: RNA interference was used to knockdown phosphatase-encoding genes. Knockdown was first conducted during development with positive results also knocked down only in fully developed adult muscle. Protein homeostasis, mitochondrial structure, and sarcomere structure were assessed using transgenic reporter proteins. Genes identified as being required to prevent protein degradation were also knocked down in conditions that blocked proteasome or autophagic degradation. Genes identified as being required to prevent autophagic degradation were also assessed for autophagic vesicle accumulation using another transgenic reporter. Lastly, bioinformatics were used to look for overlap between kinases and phosphatases required for muscle homeostasis, and the prediction that one phosphatase was required to prevent mitogen-activated protein kinase activation was assessed by western blot. RESULTS: A little over half of all phosphatases are each required to prevent abnormal development or maintenance of muscle. Eighty-six of these phosphatases have known human orthologues, 57 of which are known to be expressed in human skeletal muscle. Of the phosphatases required to prevent abnormal muscle protein degradation, roughly half are required to prevent increased autophagy. CONCLUSIONS: A significant portion of both the kinome and phosphatome are required for establishing and maintaining C. elegans muscle health. Autophagy appears to be the most commonly triggered form of protein degradation in response to disruption of phosphorylation-based signalling. The results from these screens provide measurable phenotypes for analysing the combined contribution of kinases and phosphatases in a multi-cellular organism and suggest new potential regulators of human skeletal muscle for further analysis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Mitocôndrias Musculares/metabolismo , Proteínas Musculares/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteoma/metabolismo , Proteostase/fisiologia , Sarcômeros/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Técnicas de Silenciamento de Genes , Homeostase/genética , Mitocôndrias Musculares/ultraestrutura , Proteínas Musculares/genética , Monoéster Fosfórico Hidrolases/genética , Fosforilação/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteostase/genética , Interferência de RNA , Sarcômeros/genética
13.
Cell Death Differ ; 24(4): 638-648, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28211874

RESUMO

Neurons rely on mitochondria as their preferred source of energy. Mutations in PINK1 and PARKIN cause neuronal death in early-onset Parkinson's disease (PD), thought to be due to mitochondrial dysfunction. In Drosophila pink1 and parkin mutants, mitochondrial defects lead to the compensatory upregulation of the mitochondrial one-carbon cycle metabolism genes by an unknown mechanism. Here we uncover that this branch is triggered by the activating transcription factor 4 (ATF4). We show that ATF4 regulates the expression of one-carbon metabolism genes SHMT2 and NMDMC as a protective response to mitochondrial toxicity. Suppressing Shmt2 or Nmdmc caused motor impairment and mitochondrial defects in flies. Epistatic analyses showed that suppressing the upregulation of Shmt2 or Nmdmc deteriorates the phenotype of pink1 or parkin mutants. Conversely, the genetic enhancement of these one-carbon metabolism genes in pink1 or parkin mutants was neuroprotective. We conclude that mitochondrial dysfunction caused by mutations in the Pink1/Parkin pathway engages ATF4-dependent activation of one-carbon metabolism as a protective response. Our findings show a central contribution of ATF4 signalling to PD that may represent a new therapeutic strategy. A video abstract for this article is available at https://youtu.be/cFJJm2YZKKM.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Proteínas de Drosophila/metabolismo , Ácido Fólico/metabolismo , Mitocôndrias/metabolismo , Fator 4 Ativador da Transcrição/antagonistas & inibidores , Fator 4 Ativador da Transcrição/genética , Animais , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Glicina Hidroximetiltransferase/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Mutagênese , Neuroproteção , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
14.
Xenotransplantation ; 24(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130838

RESUMO

BACKGROUND: The transplantation of porcine islets into man might soon become reality for patients with type 1 diabetes mellitus. Therefore, porcine islets of high quality and quantity, and a scalable isolation process with strict quality control will be an unconditional prerequisite to enable the best possible transplantation graft. In this study, we provide a comparative study evaluating islet isolation outcome and in vitro survival based upon donor age, organ preservation solution (OPS), and cold ischemia time (CIT). METHODS: Goettingen minipigs of younger age (1 year) and retired breeder animals (3.5 years) were studied. Pancreata were harvested according to the standards of human organ retrieval including in situ cold perfusion with either Custodiol® -HTK or Belzer® UW solution. Pancreatic tissue was characterized by quantification of apoptotic cells. Islet isolations were performed according to a modified Ricordi method, and isolation outcome was assessed by determining islet particle numbers (IP), islet equivalents (IEQ), and isolation factor (IF). Isolated islets were cultured for 24 and 48 h for the assessment of in vitro survival. RESULTS: Islet viability was significantly higher in Custodiol® -HTK preserved pancreas organs compared to Belzer® UW. Furthermore, organs harvested from retired breeder preserved in Custodiol® -HTK resulted in stable islet isolation yields even after prolonged CIT and showed superior survival rates of islets in vitro compared to the Belzer® UW group. Younger porcine donor organs resulted generally in lower islet yield and survival rates. CONCLUSIONS: In summary, Custodiol® -HTK solution should be preferred over Belzer® UW solution for the preservation of pancreata from porcine origin. Custodiol® -HTK allows for maintaining islet viability and promotes reproducible isolation outcome and survival even after longer CIT. The usage of retired breeder animals over young animals for islet isolation is highly advisable to yield high quality and quantity.


Assuntos
Isquemia Fria , Coleta de Tecidos e Órgãos , Animais , Isquemia Fria/métodos , Transplante das Ilhotas Pancreáticas/métodos , Soluções para Preservação de Órgãos , Pâncreas , Suínos , Porco Miniatura , Fatores de Tempo , Coleta de Tecidos e Órgãos/métodos , Transplante Heterólogo/métodos
15.
Biol Open ; 6(2): 141-147, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28011627

RESUMO

Familial forms of Parkinson's disease (PD) caused by mutations in PINK1 are linked to mitochondrial impairment. Defective mitochondria are also found in Drosophila models of PD with pink1 mutations. The co-enzyme nicotinamide adenine dinucleotide (NAD+) is essential for both generating energy in mitochondria and nuclear DNA repair through NAD+-consuming poly(ADP-ribose) polymerases (PARPs). We found alterations in NAD+ salvage metabolism in Drosophila pink1 mutants and showed that a diet supplemented with the NAD+ precursor nicotinamide rescued mitochondrial defects and protected neurons from degeneration. Additionally, a mutation of Parp improved mitochondrial function and was neuroprotective in the pink1 mutants. We conclude that enhancing the availability of NAD+ by either the use of a diet supplemented with NAD+ precursors or the inhibition of NAD+-dependent enzymes, such as PARPs, which compete with mitochondria for NAD+, is a viable approach to preventing neurotoxicity associated with mitochondrial defects.

16.
Nat Cell Biol ; 16(2): 157-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24441527

RESUMO

Mutations in PINK1 cause early-onset Parkinson's disease (PD). Studies in Drosophila melanogaster have highlighted mitochondrial dysfunction on loss of Pink1 as a central mechanism of PD pathogenesis. Here we show that global analysis of transcriptional changes in Drosophila pink1 mutants reveals an upregulation of genes involved in nucleotide metabolism, critical for neuronal mitochondrial DNA synthesis. These key transcriptional changes were also detected in brains of PD patients harbouring PINK1 mutations. We demonstrate that genetic enhancement of the nucleotide salvage pathway in neurons of pink1 mutant flies rescues mitochondrial impairment. In addition, pharmacological approaches enhancing nucleotide pools reduce mitochondrial dysfunction caused by Pink1 deficiency. We conclude that loss of Pink1 evokes the activation of a previously unidentified metabolic reprogramming pathway to increase nucleotide pools and promote mitochondrial biogenesis. We propose that targeting strategies enhancing nucleotide synthesis pathways may reverse mitochondrial dysfunction and rescue neurodegeneration in PD and, potentially, other diseases linked to mitochondrial impairment.


Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila/fisiologia , Mitocôndrias/fisiologia , Mutação , Nucleotídeos/metabolismo , Doença de Parkinson/fisiopatologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , DNA Mitocondrial/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética
17.
Cell Commun Signal ; 11: 71, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24060339

RESUMO

BACKGROUND: Kinases are important signalling molecules for modulating cellular processes and major targets of drug discovery programs. However, functional information for roughly half the human kinome is lacking. We conducted three kinome wide, >90%, RNAi screens and epistasis testing of some identified kinases against known intramuscular signalling systems to increase the functional annotation of the C. elegans kinome and expand our understanding of kinome influence upon muscle protein degradation. RESULTS: 96 kinases were identified as required for normal protein homeostasis, 74 for normal mitochondrial networks and 50 for normal sarcomere structure. Knockdown of kinases required only for normal protein homeostasis and/or mitochondrial structure was significantly less likely to produce a developmental or behavioural phenotype than knockdown of kinases required for normal sarcomere structure and/or other sub-cellular processes. Lastly, assessment of kinases for which knockdown produced muscle protein degradation against the known regulatory pathways in C. elegans muscle revealed that close to half of kinase knockdowns activated autophagy in a MAPK dependent fashion. CONCLUSIONS: Roughly 40% of kinases studied, 159 of 397, are important in establishing or maintaining muscle cell health, with most required for both. For kinases where decreased expression triggers protein degradation, autophagy is most commonly activated. These results increase the annotation of the C. elegans kinome to roughly 75% and enable future kinome research. As 33% of kinases identified have orthologues expressed in human muscle, our results also enable testing of whether identified kinases function similarly in maintaining human muscle homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Sarcômeros/metabolismo , Animais , Homeostase , Proteínas Quinases/genética , Interferência de RNA
18.
J Mol Med (Berl) ; 91(6): 665-71, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23644494

RESUMO

The brain uses more energy than any other human organ, accounting for 20 % of the body's total demand. Mitochondria are energy-converting organelles with a pivotal role in meeting the energetic needs of the human brain. Therefore, the decline of these cellular powerhouses can have a negative impact on the function and plasticity of neurons and is believed to have a prominent role in ageing and in the occurrence of several neurological disorders, such as Parkinson's disease (PD). As a consequence of their physiological roles, mitochondria are subjected to high levels of stress and have therefore developed several stress-protective mitochondrial quality control mechanisms that ensure the optimal activity of their molecular machinery. Here, we review some of the most recent advances in our understanding of the regulation of mitochondrial stress pathways with particular emphasis on how defective mitochondrial quality control might contribute to PD.


Assuntos
Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Animais , Humanos , Neurônios/metabolismo
19.
Proc Natl Acad Sci U S A ; 110(6): 2288-93, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23345449

RESUMO

Here, we evaluate an alternative approach of preconditioning pancreatic islets before transplantation using a potent agonist of growth-hormone-releasing hormone (GHRH) to promote islet viability and function, and we explore the adrenal gland as an alternative transplantation site for islet engraftment. The endocrine microenvironment of the adrenal represents a promising niche with the unique advantages of exceptional high oxygen tension and local anti-inflammatory and immunosuppressive properties. GHRH agonists have been shown to promote islet graft survival and function, which may help to reduce the islet mass necessary to reverse diabetes. In the present study, the most potent GHRH agonist MR403 was tested on insulinoma cells, isolated rat islets, and adrenal ß-cell cocultures in vitro. GHRH receptor is expressed on both adrenal cells and islets. MR403 caused a significant increase in cell viability and proliferation and revealed an antiapoptotic effect on insulinoma cells. Viability of rat islets was increased after treatment with the agonist and in coculture with adrenal cells. Rat islets were transplanted into diabetic mice to the intraadrenal transplant site and compared with the classical transplants underneath the kidney capsule. Graft function and integration were tested by metabolic follow-up and immunohistochemical staining of intraadrenal grafts. A rapid decrease occurred in blood glucose levels in both models, and all animals reached normoglycemia within the first days after transplantation. Our studies demonstrated that the adrenal may be an attractive site for islet transplantation and that GHRH analogs might allow reduction of the islet mass needed to reverse a diabetic status.


Assuntos
Hormônio Liberador de Gonadotropina/agonistas , Transplante das Ilhotas Pancreáticas/métodos , Condicionamento Pré-Transplante/métodos , Glândulas Suprarrenais/fisiologia , Glândulas Suprarrenais/cirurgia , Animais , Linhagem Celular , Técnicas de Cocultura , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/cirurgia , Feminino , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiologia , Transplante das Ilhotas Pancreáticas/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética
20.
Genes (Basel) ; 3(4): 686-701, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23152949

RESUMO

RNAi is a convenient, widely used tool for screening for genes of interest. We have recently used this technology to screen roughly 750 candidate genes, in C. elegans, for potential roles in regulating muscle protein degradation in vivo. To maximize confidence and assess reproducibility, we have only used previously validated RNAi constructs and have included time courses and replicates. To maximize mechanistic understanding, we have examined multiple sub-cellular phenotypes in multiple compartments in muscle. We have also tested knockdowns of putative regulators of degradation in the context of mutations or drugs that were previously shown to inhibit protein degradation by diverse mechanisms. Here we discuss how assaying multiple phenotypes, multiplexing RNAi screens with use of mutations and drugs, and use of bioinformatics can provide more data on rates of potential false positives and negatives as well as more mechanistic insight than simple RNAi screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...