Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 64(12): 100466, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918524

RESUMO

The Wsc1, Wsc2, and Wsc3 proteins are essential cell surface sensors that respond to cell wall perturbation by activating the cell wall integrity pathway (CWIP). We show here that in situ production of cholesterol (in place of ergosterol) induces hyper-phosphorylation of Slt2, the MAPK of the CWIP, and upregulates cell wall biosynthesis. Deletion of all three Wsc genes in K. phaffii reverts these phenotypes. In the cholesterol-producing strain, both Wsc1 and Wsc3 accumulate in the plasma membrane. Close inspection of the transmembrane domains of all three Wsc proteins predicted by AlphaFold2 revealed the presence of CRAC sterol-binding motifs. Experiments using a photoreactive cholesterol derivative indicate intimate interaction of this sterol with the Wsc transmembrane domain, and this apparent sterol binding was abrogated in Wsc mutants with substitutions in the CRAC motif. We also observed cholesterol interaction with CRAC-like motifs in the transmembrane domains of mammalian integrins, analogs of Wsc proteins. Our results suggest that proper signaling of the Wsc sensors requires highly specific binding of the native endogenous terminal sterol, ergosterol.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Esteróis/metabolismo , Colesterol/metabolismo , Ergosterol/metabolismo
2.
iScience ; 25(9): 104888, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36043049

RESUMO

The auxin-inducible degron (AID) system is a useful technique to rapidly deplete any protein of interest "on-demand." In this study, we successfully established the AID system for the "biotech" yeast Komagataella phaffii. First, we tested different expression levels of TIR1 for auxin-induced degradation of the glycerol kinase Gut1. Moderate expression of TIR1 resulted in complete degradation of the target protein within several minutes. Second, we show that the absence of all three Wsc type sensors is detrimental to cell growth, which indicates that these are the dominant cell wall sensors this yeast. Third, down-regulation of Erg1, an essential enzyme of the ergosterol biosynthetic pathway, resulted in quick and efficient accumulation of squalene, a pharmaceutically relevant reagent. We conclude that AID is an extremely powerful tool that, for the first time, enables the analysis of gene essentiality and function in K. phaffii.

3.
Front Microbiol ; 11: 607028, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505376

RESUMO

Komagataella phaffii (Pichia pastoris) is one of the most extensively applied yeast species in pharmaceutical and biotechnological industries, and, therefore, also called the biotech yeast. However, thanks to more advanced strain engineering techniques, it recently started to gain attention as model organism in fundamental research. So far, the most studied model yeast is its distant cousin, Saccharomyces cerevisiae. While these data are of great importance, they limit our knowledge to one organism only. Since the divergence of the two species 250 million years ago, K. phaffii appears to have evolved less rapidly than S. cerevisiae, which is why it remains more characteristic of the common ancient yeast ancestors and shares more features with metazoan cells. This makes K. phaffii a valuable model organism for research on eukaryotic molecular cell biology, a potential we are only beginning to fully exploit. As methylotrophic yeast, K. phaffii has the intriguing property of being able to efficiently assimilate methanol as a sole source of carbon and energy. Therefore, major efforts have been made using K. phaffii as model organism to study methanol assimilation, peroxisome biogenesis and pexophagy. Other research topics covered in this review range from yeast genetics including mating and sporulation behavior to other cellular processes such as protein secretion, lipid biosynthesis and cell wall biogenesis. In this review article, we compare data obtained from K. phaffii with S. cerevisiae and other yeasts whenever relevant, elucidate major differences, and, most importantly, highlight the big potential of using K. phaffii in fundamental research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...