Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(24): 16280, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28604874

RESUMO

Correction for 'Eu2+-Eu3+ valence transition in double, Eu-, and Na-doped PbSe from transport, magnetic, and electronic structure studies' by Bartlomiej Wiendlocha et al., Phys. Chem. Chem. Phys., 2017, 19, 9606-9616.

2.
Phys Chem Chem Phys ; 19(14): 9606-9616, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28345722

RESUMO

The Eu atoms in Pb1-xEuxSe have long been assumed to be divalent. We show that p-type doping of this magnetic semiconductor alloy with Na can modify the effective Eu valence: a mixed, Eu2+-Eu3+ state appears in Pb1-x-yEuxNaySe at particular values of y. Magnetization, carrier concentration, resistivity, and thermopower of Pb1-x-yEuxNaySe are reported for a number of samples with different x and y. A pronounced increase in thermopower at a given carrier concentration was identified and attributed to the presence of enhanced ionized impurity scattering. A strong decrease in the hole concentration is observed in Pb1-yNaySe when Eu is added to the system, which we attribute to a Eu2+-Eu3+ self-ionization process. This is evidenced by magnetization measurements, which reveal a significant reduction of the magnetic moment of Pb1-xEuxSe upon alloying with Na. Further, a deviation of magnetization from a purely paramagnetic state, described by a Brillouin function, identifies antiferromagnetic interactions between the nearest-neighbor Eu atoms: a value of Jex/kB = -0.35 K was found for the exchange coupling parameter. The conclusion of a Eu2+-Eu3+ self-ionization process being in effect is supported further by the electronic structure calculations, which show that an instability of the 4f7 configuration of the Eu2+ ion appears with Na doping. Schematically, it was found that the Eu 4f levels form states near enough to the Fermi energy that hole doping can lower the Fermi energy and trigger a reconfiguration of a 4f electronic shell.

3.
Phys Chem Chem Phys ; 15(22): 8506-19, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23657606

RESUMO

For the first time a detailed structural model has been determined which shows how the lone-pairs of electrons are arranged relative to each other in a glass network containing lone-pair cations. High energy X-ray and neutron diffraction patterns of a very high lead content silicate glass (80PbO·20SiO2) have been used to build three-dimensional models using empirical potential structure refinement. Coordination number and bond angle distributions reveal structural similarity to crystalline Pb11Si3O17 and α- and ß-PbO, and therefore strong evidence for a plumbite glass network built from pyramidal [PbO(m)] polyhedra (m ~ 3-4), with stereochemically active lone-pairs, although with greater disorder in the first coordination shell of lead compared to the first coordination shell of silicon. The oxygen atoms are coordinated predominantly to four cations. Explicit introduction of lone-pair entities into some models leads to modification of the local Pb environment, whilst still allowing for reproduction of the measured diffraction patterns, thus demonstrating the non-uniqueness of the solutions. Nonetheless, the models share many features with crystalline Pb11Si3O17, including the O-Pb-O bond angle distribution, which is more highly structured than reported for lower Pb content glasses using reverse Monte Carlo techniques. The lone-pair separation of 2.85 Å in the model glasses compares favourably with that estimated in α-PbO as 2.88 Å, and these lone-pairs organise to create voids in the glass, just as they create channels in Pb11Si3O17 and interlayer spaces in the PbO polymorphs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...