Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 15194, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32939011

RESUMO

Wearable sensors and electronic systems are of great interest these days, but their viability depends on the availability of compatible energy storage solutions. Such sensors can either be integrated into clothing or attached directly to the skin, each case presenting a different set of requirements for the devices. In this work, we examine the performance of printed supercapacitors while attached to the skin. The devices are manufactured from benign materials, such as water, carbon and sodium chloride, and worn on the forearm or chest for 24 h for durability testing. The supercapacitors exhibit excellent mechanical durability and stay well attached under all test conditions. Electrically, the supercapacitors exhibit reliable capacitive function throughout the test period; other key parameters such as equivalent series resistance and leakage current are affected but to a minimal extent. The movement and deformation of the supercapacitor show good compatibility with the skin, as shown by the Digital Image Correlation full field strain measurements on and around the capacitor. The supercapacitors deform with the skin and do not hinder normal movement or function.

2.
Sci Rep ; 9(1): 14059, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575914

RESUMO

Aqueous supercapacitors offer a safe alternative for intermediate energy storage in energy harvesting applications, but their performance is limited to relatively warm temperatures. We report the performance of glycerol as a non-toxic anti-freeze for a water-based electrolyte from room temperature to -30 °C at various concentrations. The supercapacitors are manufactured with graphite and activated carbon as current collector and electrode on a flexible polyester (PET) substrate by stencil printing, with a sodium chloride solution as the electrolyte. The devices are characterized at various constant temperatures for electrical performance, as well as in room temperature for mass loss and development of performance over time. It is shown that supercapacitors with glycerol function well in the decreased temperatures compared to water: the capacitance experiences only a slight decrease and the leakage current is significantly reduced. The equivalent series resistance is affected the most by the reduced temperatures, and should be considered the primary limiting factor in low-temperature applications. Electrolytes with 30-40% glycerol perform the best in commercial freezer temperatures, but below -20 °C a higher concentration of 45% glycerol retains better function. The results show great promise for a non-toxic alternative for improving the temperature range of printed supercapacitors.

3.
Sci Rep ; 7: 46001, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28382962

RESUMO

Harvesting micropower energy from the ambient environment requires an intermediate energy storage, for which printed aqueous supercapacitors are well suited due to their low cost and environmental friendliness. In this work, a systematic study of a large set of devices is used to investigate the effect of process variability and operating voltage on the performance and stability of screen printed aqueous supercapacitors. The current collectors and active layers are printed with graphite and activated carbon inks, respectively, and aqueous NaCl used as the electrolyte. The devices are characterized through galvanostatic discharge measurements for quantitative determination of capacitance and equivalent series resistance (ESR), as well as impedance spectroscopy for a detailed study of the factors contributing to ESR. The capacitances are 200-360 mF and the ESRs 7.9-12.7 Ω, depending on the layer thicknesses. The ESR is found to be dominated by the resistance of the graphite current collectors and is compatible with applications in low-power distributed electronics. The effects of different operating voltages on the capacitance, leakage and aging rate of the supercapacitors are tested, and 1.0 V found to be the optimal choice for using the devices in energy harvesting applications.

4.
Sci Rep ; 6: 22967, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26957019

RESUMO

A printed energy harvesting and storage circuit powered by ambient office lighting and its use to power a printed display is reported. The autonomous device is composed of three printed electronic components: an organic photovoltaic module, a carbon-nanotubes-only supercapacitor and an electrochromic display element. Components are fabricated from safe and environmentally friendly materials, and have been fabricated using solution processing methods, which translate into low-cost and high-throughput manufacturing. A supercapacitor made of spray-coated carbon nanotube based ink and aqueous NaCl electrolyte was charged using a printed organic photovoltaic module exposed to office lighting conditions. The supercapacitor charging rate, self-discharge rate and display operation were studied in detail. The supercapacitor self-discharge rate was found to depend on the charging rate. The fully charged supercapacitor was used as a power source to run the electrochromic display over 50 times.

5.
ACS Appl Mater Interfaces ; 7(40): 22137-47, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26381462

RESUMO

Composite films consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and graphene oxide (GO) were electrochemically polymerized by electrooxidation of EDOT in ionic liquid (BMIMBF4) onto flexible electrode substrates. Two polymerization approaches were compared, and the cyclic voltammetry (CV) method was found to be superior to potentiostatic polymerization for the growth of PEDOT/GO films. After deposition, incorporated GO was reduced to rGO by a rapid electrochemical method of repetitive cathodic potential cycling, without using any reducing reagents. The films were characterized in 3-electrode configuration in BMIMBF4. Symmetric supercapacitors with aqueous electrolyte were assembled from the composite films and characterized through cyclic voltammetry and galvanostatic discharge tests. It was shown that PEDOT/rGO composites have better capacitive properties than pure PEDOT or the unreduced composite film. The cycling stability of the supercapacitors was also tested, and the results indicate that the specific capacitance still retains well over 90% of the initial value after 2000 consecutive charging/discharging cycles. The supercapacitors were demonstrated as energy storages in a room light energy harvester with a printed organic solar cell and printed electrochromic display. The results are promising for the development of energy-autonomous, low-power, and disposable electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...